BearSSL
bearssl_ec.h
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining
5  * a copy of this software and associated documentation files (the
6  * "Software"), to deal in the Software without restriction, including
7  * without limitation the rights to use, copy, modify, merge, publish,
8  * distribute, sublicense, and/or sell copies of the Software, and to
9  * permit persons to whom the Software is furnished to do so, subject to
10  * the following conditions:
11  *
12  * The above copyright notice and this permission notice shall be
13  * included in all copies or substantial portions of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22  * SOFTWARE.
23  */
24 
25 #ifndef BR_BEARSSL_EC_H__
26 #define BR_BEARSSL_EC_H__
27 
28 #include <stddef.h>
29 #include <stdint.h>
30 
31 #include "bearssl_rand.h"
32 
33 #ifdef __cplusplus
34 extern "C" {
35 #endif
36 
37 /** \file bearssl_ec.h
38  *
39  * # Elliptic Curves
40  *
41  * This file documents the EC implementations provided with BearSSL, and
42  * ECDSA.
43  *
44  * ## Elliptic Curve API
45  *
46  * Only "named curves" are supported. Each EC implementation supports
47  * one or several named curves, identified by symbolic identifiers.
48  * These identifiers are small integers, that correspond to the values
49  * registered by the
50  * [IANA](http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8).
51  *
52  * Since all currently defined elliptic curve identifiers are in the 0..31
53  * range, it is convenient to encode support of some curves in a 32-bit
54  * word, such that bit x corresponds to curve of identifier x.
55  *
56  * An EC implementation is incarnated by a `br_ec_impl` instance, that
57  * offers the following fields:
58  *
59  * - `supported_curves`
60  *
61  * A 32-bit word that documents the identifiers of the curves supported
62  * by this implementation.
63  *
64  * - `generator()`
65  *
66  * Callback method that returns a pointer to the conventional generator
67  * point for that curve.
68  *
69  * - `order()`
70  *
71  * Callback method that returns a pointer to the subgroup order for
72  * that curve. That value uses unsigned big-endian encoding.
73  *
74  * - `xoff()`
75  *
76  * Callback method that returns the offset and length of the X
77  * coordinate in an encoded point.
78  *
79  * - `mul()`
80  *
81  * Multiply a curve point with an integer.
82  *
83  * - `mulgen()`
84  *
85  * Multiply the curve generator with an integer. This may be faster
86  * than the generic `mul()`.
87  *
88  * - `muladd()`
89  *
90  * Multiply two curve points by two integers, and return the sum of
91  * the two products.
92  *
93  * All curve points are represented in uncompressed format. The `mul()`
94  * and `muladd()` methods take care to validate that the provided points
95  * are really part of the relevant curve subgroup.
96  *
97  * For all point multiplication functions, the following holds:
98  *
99  * - Functions validate that the provided points are valid members
100  * of the relevant curve subgroup. An error is reported if that is
101  * not the case.
102  *
103  * - Processing is constant-time, even if the point operands are not
104  * valid. This holds for both the source and resulting points, and
105  * the multipliers (integers). Only the byte length of the provided
106  * multiplier arrays (not their actual value length in bits) may
107  * leak through timing-based side channels.
108  *
109  * - The multipliers (integers) MUST be lower than the subgroup order.
110  * If this property is not met, then the result is indeterminate,
111  * but an error value is not ncessearily returned.
112  *
113  *
114  * ## ECDSA
115  *
116  * ECDSA signatures have two standard formats, called "raw" and "asn1".
117  * Internally, such a signature is a pair of modular integers `(r,s)`.
118  * The "raw" format is the concatenation of the unsigned big-endian
119  * encodings of these two integers, possibly left-padded with zeros so
120  * that they have the same encoded length. The "asn1" format is the
121  * DER encoding of an ASN.1 structure that contains the two integer
122  * values:
123  *
124  * ECDSASignature ::= SEQUENCE {
125  * r INTEGER,
126  * s INTEGER
127  * }
128  *
129  * In general, in all of X.509 and SSL/TLS, the "asn1" format is used.
130  * BearSSL offers ECDSA implementations for both formats; conversion
131  * functions between the two formats are also provided. Conversion of a
132  * "raw" format signature into "asn1" may enlarge a signature by no more
133  * than 9 bytes for all supported curves; conversely, conversion of an
134  * "asn1" signature to "raw" may expand the signature but the "raw"
135  * length will never be more than twice the length of the "asn1" length
136  * (and usually it will be shorter).
137  *
138  * Note that for a given signature, the "raw" format is not fully
139  * deterministic, in that it does not enforce a minimal common length.
140  */
141 
142 /*
143  * Standard curve ID. These ID are equal to the assigned numerical
144  * identifiers assigned to these curves for TLS:
145  * http://www.iana.org/assignments/tls-parameters/tls-parameters.xhtml#tls-parameters-8
146  */
147 
148 /** \brief Identifier for named curve sect163k1. */
149 #define BR_EC_sect163k1 1
150 
151 /** \brief Identifier for named curve sect163r1. */
152 #define BR_EC_sect163r1 2
153 
154 /** \brief Identifier for named curve sect163r2. */
155 #define BR_EC_sect163r2 3
156 
157 /** \brief Identifier for named curve sect193r1. */
158 #define BR_EC_sect193r1 4
159 
160 /** \brief Identifier for named curve sect193r2. */
161 #define BR_EC_sect193r2 5
162 
163 /** \brief Identifier for named curve sect233k1. */
164 #define BR_EC_sect233k1 6
165 
166 /** \brief Identifier for named curve sect233r1. */
167 #define BR_EC_sect233r1 7
168 
169 /** \brief Identifier for named curve sect239k1. */
170 #define BR_EC_sect239k1 8
171 
172 /** \brief Identifier for named curve sect283k1. */
173 #define BR_EC_sect283k1 9
174 
175 /** \brief Identifier for named curve sect283r1. */
176 #define BR_EC_sect283r1 10
177 
178 /** \brief Identifier for named curve sect409k1. */
179 #define BR_EC_sect409k1 11
180 
181 /** \brief Identifier for named curve sect409r1. */
182 #define BR_EC_sect409r1 12
183 
184 /** \brief Identifier for named curve sect571k1. */
185 #define BR_EC_sect571k1 13
186 
187 /** \brief Identifier for named curve sect571r1. */
188 #define BR_EC_sect571r1 14
189 
190 /** \brief Identifier for named curve secp160k1. */
191 #define BR_EC_secp160k1 15
192 
193 /** \brief Identifier for named curve secp160r1. */
194 #define BR_EC_secp160r1 16
195 
196 /** \brief Identifier for named curve secp160r2. */
197 #define BR_EC_secp160r2 17
198 
199 /** \brief Identifier for named curve secp192k1. */
200 #define BR_EC_secp192k1 18
201 
202 /** \brief Identifier for named curve secp192r1. */
203 #define BR_EC_secp192r1 19
204 
205 /** \brief Identifier for named curve secp224k1. */
206 #define BR_EC_secp224k1 20
207 
208 /** \brief Identifier for named curve secp224r1. */
209 #define BR_EC_secp224r1 21
210 
211 /** \brief Identifier for named curve secp256k1. */
212 #define BR_EC_secp256k1 22
213 
214 /** \brief Identifier for named curve secp256r1. */
215 #define BR_EC_secp256r1 23
216 
217 /** \brief Identifier for named curve secp384r1. */
218 #define BR_EC_secp384r1 24
219 
220 /** \brief Identifier for named curve secp521r1. */
221 #define BR_EC_secp521r1 25
222 
223 /** \brief Identifier for named curve brainpoolP256r1. */
224 #define BR_EC_brainpoolP256r1 26
225 
226 /** \brief Identifier for named curve brainpoolP384r1. */
227 #define BR_EC_brainpoolP384r1 27
228 
229 /** \brief Identifier for named curve brainpoolP512r1. */
230 #define BR_EC_brainpoolP512r1 28
231 
232 /** \brief Identifier for named curve Curve25519. */
233 #define BR_EC_curve25519 29
234 
235 /** \brief Identifier for named curve Curve448. */
236 #define BR_EC_curve448 30
237 
238 /**
239  * \brief Structure for an EC public key.
240  */
241 typedef struct {
242  /** \brief Identifier for the curve used by this key. */
243  int curve;
244  /** \brief Public curve point (uncompressed format). */
245  unsigned char *q;
246  /** \brief Length of public curve point (in bytes). */
247  size_t qlen;
249 
250 /**
251  * \brief Structure for an EC private key.
252  *
253  * The private key is an integer modulo the curve subgroup order. The
254  * encoding below tolerates extra leading zeros. In general, it is
255  * recommended that the private key has the same length as the curve
256  * subgroup order.
257  */
258 typedef struct {
259  /** \brief Identifier for the curve used by this key. */
260  int curve;
261  /** \brief Private key (integer, unsigned big-endian encoding). */
262  unsigned char *x;
263  /** \brief Private key length (in bytes). */
264  size_t xlen;
266 
267 /**
268  * \brief Type for an EC implementation.
269  */
270 typedef struct {
271  /**
272  * \brief Supported curves.
273  *
274  * This word is a bitfield: bit `x` is set if the curve of ID `x`
275  * is supported. E.g. an implementation supporting both NIST P-256
276  * (secp256r1, ID 23) and NIST P-384 (secp384r1, ID 24) will have
277  * value `0x01800000` in this field.
278  */
280 
281  /**
282  * \brief Get the conventional generator.
283  *
284  * This function returns the conventional generator (encoded
285  * curve point) for the specified curve. This function MUST NOT
286  * be called if the curve is not supported.
287  *
288  * \param curve curve identifier.
289  * \param len receiver for the encoded generator length (in bytes).
290  * \return the encoded generator.
291  */
292  const unsigned char *(*generator)(int curve, size_t *len);
293 
294  /**
295  * \brief Get the subgroup order.
296  *
297  * This function returns the order of the subgroup generated by
298  * the conventional generator, for the specified curve. Unsigned
299  * big-endian encoding is used. This function MUST NOT be called
300  * if the curve is not supported.
301  *
302  * \param curve curve identifier.
303  * \param len receiver for the encoded order length (in bytes).
304  * \return the encoded order.
305  */
306  const unsigned char *(*order)(int curve, size_t *len);
307 
308  /**
309  * \brief Get the offset and length for the X coordinate.
310  *
311  * This function returns the offset and length (in bytes) of
312  * the X coordinate in an encoded non-zero point.
313  *
314  * \param curve curve identifier.
315  * \param len receiver for the X coordinate length (in bytes).
316  * \return the offset for the X coordinate (in bytes).
317  */
318  size_t (*xoff)(int curve, size_t *len);
319 
320  /**
321  * \brief Multiply a curve point by an integer.
322  *
323  * The source point is provided in array `G` (of size `Glen` bytes);
324  * the multiplication result is written over it. The multiplier
325  * `x` (of size `xlen` bytes) uses unsigned big-endian encoding.
326  *
327  * Rules:
328  *
329  * - The specified curve MUST be supported.
330  *
331  * - The source point must be a valid point on the relevant curve
332  * subgroup (and not the "point at infinity" either). If this is
333  * not the case, then this function returns an error (0).
334  *
335  * - The multiplier integer MUST be non-zero and less than the
336  * curve subgroup order. If this property does not hold, then
337  * the result is indeterminate and an error code is not
338  * guaranteed.
339  *
340  * Returned value is 1 on success, 0 on error. On error, the
341  * contents of `G` are indeterminate.
342  *
343  * \param G point to multiply.
344  * \param Glen length of the encoded point (in bytes).
345  * \param x multiplier (unsigned big-endian).
346  * \param xlen multiplier length (in bytes).
347  * \param curve curve identifier.
348  * \return 1 on success, 0 on error.
349  */
350  uint32_t (*mul)(unsigned char *G, size_t Glen,
351  const unsigned char *x, size_t xlen, int curve);
352 
353  /**
354  * \brief Multiply the generator by an integer.
355  *
356  * The multiplier MUST be non-zero and less than the curve
357  * subgroup order. Results are indeterminate if this property
358  * does not hold.
359  *
360  * \param R output buffer for the point.
361  * \param x multiplier (unsigned big-endian).
362  * \param xlen multiplier length (in bytes).
363  * \param curve curve identifier.
364  * \return encoded result point length (in bytes).
365  */
366  size_t (*mulgen)(unsigned char *R,
367  const unsigned char *x, size_t xlen, int curve);
368 
369  /**
370  * \brief Multiply two points by two integers and add the
371  * results.
372  *
373  * The point `x*A + y*B` is computed and written back in the `A`
374  * array.
375  *
376  * Rules:
377  *
378  * - The specified curve MUST be supported.
379  *
380  * - The source points (`A` and `B`) must be valid points on
381  * the relevant curve subgroup (and not the "point at
382  * infinity" either). If this is not the case, then this
383  * function returns an error (0).
384  *
385  * - If the `B` pointer is `NULL`, then the conventional
386  * subgroup generator is used. With some implementations,
387  * this may be faster than providing a pointer to the
388  * generator.
389  *
390  * - The multiplier integers (`x` and `y`) MUST be non-zero
391  * and less than the curve subgroup order. If either integer
392  * is zero, then an error is reported, but if one of them is
393  * not lower than the subgroup order, then the result is
394  * indeterminate and an error code is not guaranteed.
395  *
396  * - If the final result is the point at infinity, then an
397  * error is returned.
398  *
399  * Returned value is 1 on success, 0 on error. On error, the
400  * contents of `A` are indeterminate.
401  *
402  * \param A first point to multiply.
403  * \param B second point to multiply (`NULL` for the generator).
404  * \param len common length of the encoded points (in bytes).
405  * \param x multiplier for `A` (unsigned big-endian).
406  * \param xlen length of multiplier for `A` (in bytes).
407  * \param y multiplier for `A` (unsigned big-endian).
408  * \param ylen length of multiplier for `A` (in bytes).
409  * \param curve curve identifier.
410  * \return 1 on success, 0 on error.
411  */
412  uint32_t (*muladd)(unsigned char *A, const unsigned char *B, size_t len,
413  const unsigned char *x, size_t xlen,
414  const unsigned char *y, size_t ylen, int curve);
415 } br_ec_impl;
416 
417 /**
418  * \brief EC implementation "i31".
419  *
420  * This implementation internally uses generic code for modular integers,
421  * with a representation as sequences of 31-bit words. It supports secp256r1,
422  * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521).
423  */
424 extern const br_ec_impl br_ec_prime_i31;
425 
426 /**
427  * \brief EC implementation "i15".
428  *
429  * This implementation internally uses generic code for modular integers,
430  * with a representation as sequences of 15-bit words. It supports secp256r1,
431  * secp384r1 and secp521r1 (aka NIST curves P-256, P-384 and P-521).
432  */
433 extern const br_ec_impl br_ec_prime_i15;
434 
435 /**
436  * \brief EC implementation "m15" for P-256.
437  *
438  * This implementation uses specialised code for curve secp256r1 (also
439  * known as NIST P-256), with optional Karatsuba decomposition, and fast
440  * modular reduction thanks to the field modulus special format. Only
441  * 32-bit multiplications are used (with 32-bit results, not 64-bit).
442  */
443 extern const br_ec_impl br_ec_p256_m15;
444 
445 /**
446  * \brief EC implementation "m31" for P-256.
447  *
448  * This implementation uses specialised code for curve secp256r1 (also
449  * known as NIST P-256), relying on multiplications of 31-bit values
450  * (MUL31).
451  */
452 extern const br_ec_impl br_ec_p256_m31;
453 
454 /**
455  * \brief EC implementation "i15" (generic code) for Curve25519.
456  *
457  * This implementation uses the generic code for modular integers (with
458  * 15-bit words) to support Curve25519. Due to the specificities of the
459  * curve definition, the following applies:
460  *
461  * - `muladd()` is not implemented (the function returns 0 systematically).
462  * - `order()` returns 2^255-1, since the point multiplication algorithm
463  * accepts any 32-bit integer as input (it clears the top bit and low
464  * three bits systematically).
465  */
466 extern const br_ec_impl br_ec_c25519_i15;
467 
468 /**
469  * \brief EC implementation "i31" (generic code) for Curve25519.
470  *
471  * This implementation uses the generic code for modular integers (with
472  * 31-bit words) to support Curve25519. Due to the specificities of the
473  * curve definition, the following applies:
474  *
475  * - `muladd()` is not implemented (the function returns 0 systematically).
476  * - `order()` returns 2^255-1, since the point multiplication algorithm
477  * accepts any 32-bit integer as input (it clears the top bit and low
478  * three bits systematically).
479  */
480 extern const br_ec_impl br_ec_c25519_i31;
481 
482 /**
483  * \brief EC implementation "m15" (specialised code) for Curve25519.
484  *
485  * This implementation uses custom code relying on multiplication of
486  * integers up to 15 bits. Due to the specificities of the curve
487  * definition, the following applies:
488  *
489  * - `muladd()` is not implemented (the function returns 0 systematically).
490  * - `order()` returns 2^255-1, since the point multiplication algorithm
491  * accepts any 32-bit integer as input (it clears the top bit and low
492  * three bits systematically).
493  */
494 extern const br_ec_impl br_ec_c25519_m15;
495 
496 /**
497  * \brief EC implementation "m31" (specialised code) for Curve25519.
498  *
499  * This implementation uses custom code relying on multiplication of
500  * integers up to 31 bits. Due to the specificities of the curve
501  * definition, the following applies:
502  *
503  * - `muladd()` is not implemented (the function returns 0 systematically).
504  * - `order()` returns 2^255-1, since the point multiplication algorithm
505  * accepts any 32-bit integer as input (it clears the top bit and low
506  * three bits systematically).
507  */
508 extern const br_ec_impl br_ec_c25519_m31;
509 
510 /**
511  * \brief Aggregate EC implementation "m15".
512  *
513  * This implementation is a wrapper for:
514  *
515  * - `br_ec_c25519_m15` for Curve25519
516  * - `br_ec_p256_m15` for NIST P-256
517  * - `br_ec_prime_i15` for other curves (NIST P-384 and NIST-P512)
518  */
519 extern const br_ec_impl br_ec_all_m15;
520 
521 /**
522  * \brief Aggregate EC implementation "m31".
523  *
524  * This implementation is a wrapper for:
525  *
526  * - `br_ec_c25519_m31` for Curve25519
527  * - `br_ec_p256_m31` for NIST P-256
528  * - `br_ec_prime_i31` for other curves (NIST P-384 and NIST-P512)
529  */
530 extern const br_ec_impl br_ec_all_m31;
531 
532 /**
533  * \brief Get the "default" EC implementation for the current system.
534  *
535  * This returns a pointer to the preferred implementation on the
536  * current system.
537  *
538  * \return the default EC implementation.
539  */
540 const br_ec_impl *br_ec_get_default(void);
541 
542 /**
543  * \brief Convert a signature from "raw" to "asn1".
544  *
545  * Conversion is done "in place" and the new length is returned.
546  * Conversion may enlarge the signature, but by no more than 9 bytes at
547  * most. On error, 0 is returned (error conditions include an odd raw
548  * signature length, or an oversized integer).
549  *
550  * \param sig signature to convert.
551  * \param sig_len signature length (in bytes).
552  * \return the new signature length, or 0 on error.
553  */
554 size_t br_ecdsa_raw_to_asn1(void *sig, size_t sig_len);
555 
556 /**
557  * \brief Convert a signature from "asn1" to "raw".
558  *
559  * Conversion is done "in place" and the new length is returned.
560  * Conversion may enlarge the signature, but the new signature length
561  * will be less than twice the source length at most. On error, 0 is
562  * returned (error conditions include an invalid ASN.1 structure or an
563  * oversized integer).
564  *
565  * \param sig signature to convert.
566  * \param sig_len signature length (in bytes).
567  * \return the new signature length, or 0 on error.
568  */
569 size_t br_ecdsa_asn1_to_raw(void *sig, size_t sig_len);
570 
571 /**
572  * \brief Type for an ECDSA signer function.
573  *
574  * A pointer to the EC implementation is provided. The hash value is
575  * assumed to have the length inferred from the designated hash function
576  * class.
577  *
578  * Signature is written in the buffer pointed to by `sig`, and the length
579  * (in bytes) is returned. On error, nothing is written in the buffer,
580  * and 0 is returned. This function returns 0 if the specified curve is
581  * not supported by the provided EC implementation.
582  *
583  * The signature format is either "raw" or "asn1", depending on the
584  * implementation; maximum length is predictable from the implemented
585  * curve:
586  *
587  * | curve | raw | asn1 |
588  * | :--------- | --: | ---: |
589  * | NIST P-256 | 64 | 72 |
590  * | NIST P-384 | 96 | 104 |
591  * | NIST P-521 | 132 | 139 |
592  *
593  * \param impl EC implementation to use.
594  * \param hf hash function used to process the data.
595  * \param hash_value signed data (hashed).
596  * \param sk EC private key.
597  * \param sig destination buffer.
598  * \return the signature length (in bytes), or 0 on error.
599  */
600 typedef size_t (*br_ecdsa_sign)(const br_ec_impl *impl,
601  const br_hash_class *hf, const void *hash_value,
602  const br_ec_private_key *sk, void *sig);
603 
604 /**
605  * \brief Type for an ECDSA signature verification function.
606  *
607  * A pointer to the EC implementation is provided. The hashed value,
608  * computed over the purportedly signed data, is also provided with
609  * its length.
610  *
611  * The signature format is either "raw" or "asn1", depending on the
612  * implementation.
613  *
614  * Returned value is 1 on success (valid signature), 0 on error. This
615  * function returns 0 if the specified curve is not supported by the
616  * provided EC implementation.
617  *
618  * \param impl EC implementation to use.
619  * \param hash signed data (hashed).
620  * \param hash_len hash value length (in bytes).
621  * \param pk EC public key.
622  * \param sig signature.
623  * \param sig_len signature length (in bytes).
624  * \return 1 on success, 0 on error.
625  */
626 typedef uint32_t (*br_ecdsa_vrfy)(const br_ec_impl *impl,
627  const void *hash, size_t hash_len,
628  const br_ec_public_key *pk, const void *sig, size_t sig_len);
629 
630 /**
631  * \brief ECDSA signature generator, "i31" implementation, "asn1" format.
632  *
633  * \see br_ecdsa_sign()
634  *
635  * \param impl EC implementation to use.
636  * \param hf hash function used to process the data.
637  * \param hash_value signed data (hashed).
638  * \param sk EC private key.
639  * \param sig destination buffer.
640  * \return the signature length (in bytes), or 0 on error.
641  */
642 size_t br_ecdsa_i31_sign_asn1(const br_ec_impl *impl,
643  const br_hash_class *hf, const void *hash_value,
644  const br_ec_private_key *sk, void *sig);
645 
646 /**
647  * \brief ECDSA signature generator, "i31" implementation, "raw" format.
648  *
649  * \see br_ecdsa_sign()
650  *
651  * \param impl EC implementation to use.
652  * \param hf hash function used to process the data.
653  * \param hash_value signed data (hashed).
654  * \param sk EC private key.
655  * \param sig destination buffer.
656  * \return the signature length (in bytes), or 0 on error.
657  */
658 size_t br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
659  const br_hash_class *hf, const void *hash_value,
660  const br_ec_private_key *sk, void *sig);
661 
662 /**
663  * \brief ECDSA signature verifier, "i31" implementation, "asn1" format.
664  *
665  * \see br_ecdsa_vrfy()
666  *
667  * \param impl EC implementation to use.
668  * \param hash signed data (hashed).
669  * \param hash_len hash value length (in bytes).
670  * \param pk EC public key.
671  * \param sig signature.
672  * \param sig_len signature length (in bytes).
673  * \return 1 on success, 0 on error.
674  */
675 uint32_t br_ecdsa_i31_vrfy_asn1(const br_ec_impl *impl,
676  const void *hash, size_t hash_len,
677  const br_ec_public_key *pk, const void *sig, size_t sig_len);
678 
679 /**
680  * \brief ECDSA signature verifier, "i31" implementation, "raw" format.
681  *
682  * \see br_ecdsa_vrfy()
683  *
684  * \param impl EC implementation to use.
685  * \param hash signed data (hashed).
686  * \param hash_len hash value length (in bytes).
687  * \param pk EC public key.
688  * \param sig signature.
689  * \param sig_len signature length (in bytes).
690  * \return 1 on success, 0 on error.
691  */
692 uint32_t br_ecdsa_i31_vrfy_raw(const br_ec_impl *impl,
693  const void *hash, size_t hash_len,
694  const br_ec_public_key *pk, const void *sig, size_t sig_len);
695 
696 /**
697  * \brief ECDSA signature generator, "i15" implementation, "asn1" format.
698  *
699  * \see br_ecdsa_sign()
700  *
701  * \param impl EC implementation to use.
702  * \param hf hash function used to process the data.
703  * \param hash_value signed data (hashed).
704  * \param sk EC private key.
705  * \param sig destination buffer.
706  * \return the signature length (in bytes), or 0 on error.
707  */
708 size_t br_ecdsa_i15_sign_asn1(const br_ec_impl *impl,
709  const br_hash_class *hf, const void *hash_value,
710  const br_ec_private_key *sk, void *sig);
711 
712 /**
713  * \brief ECDSA signature generator, "i15" implementation, "raw" format.
714  *
715  * \see br_ecdsa_sign()
716  *
717  * \param impl EC implementation to use.
718  * \param hf hash function used to process the data.
719  * \param hash_value signed data (hashed).
720  * \param sk EC private key.
721  * \param sig destination buffer.
722  * \return the signature length (in bytes), or 0 on error.
723  */
724 size_t br_ecdsa_i15_sign_raw(const br_ec_impl *impl,
725  const br_hash_class *hf, const void *hash_value,
726  const br_ec_private_key *sk, void *sig);
727 
728 /**
729  * \brief ECDSA signature verifier, "i15" implementation, "asn1" format.
730  *
731  * \see br_ecdsa_vrfy()
732  *
733  * \param impl EC implementation to use.
734  * \param hash signed data (hashed).
735  * \param hash_len hash value length (in bytes).
736  * \param pk EC public key.
737  * \param sig signature.
738  * \param sig_len signature length (in bytes).
739  * \return 1 on success, 0 on error.
740  */
741 uint32_t br_ecdsa_i15_vrfy_asn1(const br_ec_impl *impl,
742  const void *hash, size_t hash_len,
743  const br_ec_public_key *pk, const void *sig, size_t sig_len);
744 
745 /**
746  * \brief ECDSA signature verifier, "i15" implementation, "raw" format.
747  *
748  * \see br_ecdsa_vrfy()
749  *
750  * \param impl EC implementation to use.
751  * \param hash signed data (hashed).
752  * \param hash_len hash value length (in bytes).
753  * \param pk EC public key.
754  * \param sig signature.
755  * \param sig_len signature length (in bytes).
756  * \return 1 on success, 0 on error.
757  */
758 uint32_t br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl,
759  const void *hash, size_t hash_len,
760  const br_ec_public_key *pk, const void *sig, size_t sig_len);
761 
762 /**
763  * \brief Get "default" ECDSA implementation (signer, asn1 format).
764  *
765  * This returns the preferred implementation of ECDSA signature generation
766  * ("asn1" output format) on the current system.
767  *
768  * \return the default implementation.
769  */
771 
772 /**
773  * \brief Get "default" ECDSA implementation (signer, raw format).
774  *
775  * This returns the preferred implementation of ECDSA signature generation
776  * ("raw" output format) on the current system.
777  *
778  * \return the default implementation.
779  */
781 
782 /**
783  * \brief Get "default" ECDSA implementation (verifier, asn1 format).
784  *
785  * This returns the preferred implementation of ECDSA signature verification
786  * ("asn1" output format) on the current system.
787  *
788  * \return the default implementation.
789  */
791 
792 /**
793  * \brief Get "default" ECDSA implementation (verifier, raw format).
794  *
795  * This returns the preferred implementation of ECDSA signature verification
796  * ("raw" output format) on the current system.
797  *
798  * \return the default implementation.
799  */
801 
802 /**
803  * \brief Maximum size for EC private key element buffer.
804  *
805  * This is the largest number of bytes that `br_ec_keygen()` may need or
806  * ever return.
807  */
808 #define BR_EC_KBUF_PRIV_MAX_SIZE 72
809 
810 /**
811  * \brief Maximum size for EC public key element buffer.
812  *
813  * This is the largest number of bytes that `br_ec_compute_public()` may
814  * need or ever return.
815  */
816 #define BR_EC_KBUF_PUB_MAX_SIZE 145
817 
818 /**
819  * \brief Generate a new EC private key.
820  *
821  * If the specified `curve` is not supported by the elliptic curve
822  * implementation (`impl`), then this function returns zero.
823  *
824  * The `sk` structure fields are set to the new private key data. In
825  * particular, `sk.x` is made to point to the provided key buffer (`kbuf`),
826  * in which the actual private key data is written. That buffer is assumed
827  * to be large enough. The `BR_EC_KBUF_PRIV_MAX_SIZE` defines the maximum
828  * size for all supported curves.
829  *
830  * The number of bytes used in `kbuf` is returned. If `kbuf` is `NULL`, then
831  * the private key is not actually generated, and `sk` may also be `NULL`;
832  * the minimum length for `kbuf` is still computed and returned.
833  *
834  * If `sk` is `NULL` but `kbuf` is not `NULL`, then the private key is
835  * still generated and stored in `kbuf`.
836  *
837  * \param rng_ctx source PRNG context (already initialized).
838  * \param impl the elliptic curve implementation.
839  * \param sk the private key structure to fill, or `NULL`.
840  * \param kbuf the key element buffer, or `NULL`.
841  * \param curve the curve identifier.
842  * \return the key data length (in bytes), or zero.
843  */
844 size_t br_ec_keygen(const br_prng_class **rng_ctx,
845  const br_ec_impl *impl, br_ec_private_key *sk,
846  void *kbuf, int curve);
847 
848 /**
849  * \brief Compute EC public key from EC private key.
850  *
851  * This function uses the provided elliptic curve implementation (`impl`)
852  * to compute the public key corresponding to the private key held in `sk`.
853  * The public key point is written into `kbuf`, which is then linked from
854  * the `*pk` structure. The size of the public key point, i.e. the number
855  * of bytes used in `kbuf`, is returned.
856  *
857  * If `kbuf` is `NULL`, then the public key point is NOT computed, and
858  * the public key structure `*pk` is unmodified (`pk` may be `NULL` in
859  * that case). The size of the public key point is still returned.
860  *
861  * If `pk` is `NULL` but `kbuf` is not `NULL`, then the public key
862  * point is computed and stored in `kbuf`, and its size is returned.
863  *
864  * If the curve used by the private key is not supported by the curve
865  * implementation, then this function returns zero.
866  *
867  * The private key MUST be valid. An off-range private key value is not
868  * necessarily detected, and leads to unpredictable results.
869  *
870  * \param impl the elliptic curve implementation.
871  * \param pk the public key structure to fill (or `NULL`).
872  * \param kbuf the public key point buffer (or `NULL`).
873  * \param sk the source private key.
874  * \return the public key point length (in bytes), or zero.
875  */
876 size_t br_ec_compute_pub(const br_ec_impl *impl, br_ec_public_key *pk,
877  void *kbuf, const br_ec_private_key *sk);
878 
879 #ifdef __cplusplus
880 }
881 #endif
882 
883 #endif
unsigned char * x
Private key (integer, unsigned big-endian encoding).
Definition: bearssl_ec.h:262
uint32_t br_ecdsa_i31_vrfy_asn1(const br_ec_impl *impl, const void *hash, size_t hash_len, const br_ec_public_key *pk, const void *sig, size_t sig_len)
ECDSA signature verifier, "i31" implementation, "asn1" format.
unsigned char * q
Public curve point (uncompressed format).
Definition: bearssl_ec.h:245
br_ecdsa_vrfy br_ecdsa_vrfy_asn1_get_default(void)
Get "default" ECDSA implementation (verifier, asn1 format).
uint32_t br_ecdsa_i15_vrfy_raw(const br_ec_impl *impl, const void *hash, size_t hash_len, const br_ec_public_key *pk, const void *sig, size_t sig_len)
ECDSA signature verifier, "i15" implementation, "raw" format.
size_t br_ec_keygen(const br_prng_class **rng_ctx, const br_ec_impl *impl, br_ec_private_key *sk, void *kbuf, int curve)
Generate a new EC private key.
const br_ec_impl br_ec_prime_i31
EC implementation "i31".
uint32_t(* br_ecdsa_vrfy)(const br_ec_impl *impl, const void *hash, size_t hash_len, const br_ec_public_key *pk, const void *sig, size_t sig_len)
Type for an ECDSA signature verification function.
Definition: bearssl_ec.h:626
size_t br_ec_compute_pub(const br_ec_impl *impl, br_ec_public_key *pk, void *kbuf, const br_ec_private_key *sk)
Compute EC public key from EC private key.
size_t br_ecdsa_i15_sign_asn1(const br_ec_impl *impl, const br_hash_class *hf, const void *hash_value, const br_ec_private_key *sk, void *sig)
ECDSA signature generator, "i15" implementation, "asn1" format.
uint32_t br_ecdsa_i15_vrfy_asn1(const br_ec_impl *impl, const void *hash, size_t hash_len, const br_ec_public_key *pk, const void *sig, size_t sig_len)
ECDSA signature verifier, "i15" implementation, "asn1" format.
uint32_t br_ecdsa_i31_vrfy_raw(const br_ec_impl *impl, const void *hash, size_t hash_len, const br_ec_public_key *pk, const void *sig, size_t sig_len)
ECDSA signature verifier, "i31" implementation, "raw" format.
size_t qlen
Length of public curve point (in bytes).
Definition: bearssl_ec.h:247
size_t br_ecdsa_asn1_to_raw(void *sig, size_t sig_len)
Convert a signature from "asn1" to "raw".
const br_ec_impl br_ec_all_m31
Aggregate EC implementation "m31".
size_t br_ecdsa_i15_sign_raw(const br_ec_impl *impl, const br_hash_class *hf, const void *hash_value, const br_ec_private_key *sk, void *sig)
ECDSA signature generator, "i15" implementation, "raw" format.
const br_ec_impl br_ec_c25519_i15
EC implementation "i15" (generic code) for Curve25519.
size_t br_ecdsa_raw_to_asn1(void *sig, size_t sig_len)
Convert a signature from "raw" to "asn1".
size_t(* br_ecdsa_sign)(const br_ec_impl *impl, const br_hash_class *hf, const void *hash_value, const br_ec_private_key *sk, void *sig)
Type for an ECDSA signer function.
Definition: bearssl_ec.h:600
Structure for an EC public key.
Definition: bearssl_ec.h:241
int curve
Identifier for the curve used by this key.
Definition: bearssl_ec.h:243
const br_ec_impl br_ec_all_m15
Aggregate EC implementation "m15".
uint32_t supported_curves
Supported curves.
Definition: bearssl_ec.h:279
Structure for an EC private key.
Definition: bearssl_ec.h:258
size_t br_ecdsa_i31_sign_raw(const br_ec_impl *impl, const br_hash_class *hf, const void *hash_value, const br_ec_private_key *sk, void *sig)
ECDSA signature generator, "i31" implementation, "raw" format.
size_t br_ecdsa_i31_sign_asn1(const br_ec_impl *impl, const br_hash_class *hf, const void *hash_value, const br_ec_private_key *sk, void *sig)
ECDSA signature generator, "i31" implementation, "asn1" format.
const br_ec_impl br_ec_c25519_i31
EC implementation "i31" (generic code) for Curve25519.
br_ecdsa_sign br_ecdsa_sign_raw_get_default(void)
Get "default" ECDSA implementation (signer, raw format).
br_ecdsa_sign br_ecdsa_sign_asn1_get_default(void)
Get "default" ECDSA implementation (signer, asn1 format).
const br_ec_impl br_ec_c25519_m15
EC implementation "m15" (specialised code) for Curve25519.
size_t xlen
Private key length (in bytes).
Definition: bearssl_ec.h:264
const br_ec_impl * br_ec_get_default(void)
Get the "default" EC implementation for the current system.
const br_ec_impl br_ec_p256_m15
EC implementation "m15" for P-256.
Type for an EC implementation.
Definition: bearssl_ec.h:270
const br_ec_impl br_ec_p256_m31
EC implementation "m31" for P-256.
const br_ec_impl br_ec_c25519_m31
EC implementation "m31" (specialised code) for Curve25519.
int curve
Identifier for the curve used by this key.
Definition: bearssl_ec.h:260
const br_ec_impl br_ec_prime_i15
EC implementation "i15".
br_ecdsa_vrfy br_ecdsa_vrfy_raw_get_default(void)
Get "default" ECDSA implementation (verifier, raw format).