From: Thomas Pornin Date: Mon, 16 Jan 2017 17:04:40 +0000 (+0100) Subject: Added optimised implementation of P-256 that uses 32->64 multiplications (MUL31). X-Git-Tag: v0.4~16 X-Git-Url: https://bearssl.org/gitweb//home/git/?a=commitdiff_plain;h=bd3036844bd20b2b8d7bce7fee5ad010ce401915;p=BearSSL Added optimised implementation of P-256 that uses 32->64 multiplications (MUL31). --- diff --git a/Makefile b/Makefile index 336e004..32980cc 100644 --- a/Makefile +++ b/Makefile @@ -47,7 +47,7 @@ TESTX509 = testx509 TESTMATH = testmath OBJCODEC = $(BUILD)/ccopy.o $(BUILD)/dec16be.o $(BUILD)/dec16le.o $(BUILD)/dec32be.o $(BUILD)/dec32le.o $(BUILD)/dec64be.o $(BUILD)/dec64le.o $(BUILD)/enc16be.o $(BUILD)/enc16le.o $(BUILD)/enc32be.o $(BUILD)/enc32le.o $(BUILD)/enc64be.o $(BUILD)/enc64le.o $(BUILD)/pemdec.o -OBJEC = $(BUILD)/ec_all_m15.o $(BUILD)/ec_c25519_i15.o $(BUILD)/ec_c25519_i31.o $(BUILD)/ec_c25519_m15.o $(BUILD)/ec_c25519_m31.o $(BUILD)/ec_curve25519.o $(BUILD)/ec_p256_m15.o $(BUILD)/ec_prime_i15.o $(BUILD)/ec_prime_i31.o $(BUILD)/ec_secp256r1.o $(BUILD)/ec_secp384r1.o $(BUILD)/ec_secp521r1.o $(BUILD)/ecdsa_atr.o $(BUILD)/ecdsa_i15_bits.o $(BUILD)/ecdsa_i15_sign_asn1.o $(BUILD)/ecdsa_i15_sign_raw.o $(BUILD)/ecdsa_i15_vrfy_asn1.o $(BUILD)/ecdsa_i15_vrfy_raw.o $(BUILD)/ecdsa_i31_bits.o $(BUILD)/ecdsa_i31_sign_asn1.o $(BUILD)/ecdsa_i31_sign_raw.o $(BUILD)/ecdsa_i31_vrfy_asn1.o $(BUILD)/ecdsa_i31_vrfy_raw.o $(BUILD)/ecdsa_rta.o +OBJEC = $(BUILD)/ec_all_m15.o $(BUILD)/ec_all_m31.o $(BUILD)/ec_c25519_i15.o $(BUILD)/ec_c25519_i31.o $(BUILD)/ec_c25519_m15.o $(BUILD)/ec_c25519_m31.o $(BUILD)/ec_curve25519.o $(BUILD)/ec_p256_m15.o $(BUILD)/ec_p256_m31.o $(BUILD)/ec_prime_i15.o $(BUILD)/ec_prime_i31.o $(BUILD)/ec_secp256r1.o $(BUILD)/ec_secp384r1.o $(BUILD)/ec_secp521r1.o $(BUILD)/ecdsa_atr.o $(BUILD)/ecdsa_i15_bits.o $(BUILD)/ecdsa_i15_sign_asn1.o $(BUILD)/ecdsa_i15_sign_raw.o $(BUILD)/ecdsa_i15_vrfy_asn1.o $(BUILD)/ecdsa_i15_vrfy_raw.o $(BUILD)/ecdsa_i31_bits.o $(BUILD)/ecdsa_i31_sign_asn1.o $(BUILD)/ecdsa_i31_sign_raw.o $(BUILD)/ecdsa_i31_vrfy_asn1.o $(BUILD)/ecdsa_i31_vrfy_raw.o $(BUILD)/ecdsa_rta.o # $(BUILD)/ec_prime_i31_secp256r1.o $(BUILD)/ec_prime_i31_secp384r1.o $(BUILD)/ec_prime_i31_secp521r1.o OBJHASH = $(BUILD)/dig_oid.o $(BUILD)/dig_size.o $(BUILD)/ghash_ctmul.o $(BUILD)/ghash_ctmul32.o $(BUILD)/ghash_ctmul64.o $(BUILD)/md5.o $(BUILD)/md5sha1.o $(BUILD)/multihash.o $(BUILD)/sha1.o $(BUILD)/sha2big.o $(BUILD)/sha2small.o OBJINT15 = $(BUILD)/i15_core.o $(BUILD)/i15_ext1.o $(BUILD)/i15_ext2.o @@ -165,6 +165,9 @@ $(BUILD)/ec_g_secp521r1.o: src/ec/ec_g_secp521r1.c $(HEADERS) $(BUILD)/ec_all_m15.o: src/ec/ec_all_m15.c $(HEADERS) $(CC) $(CFLAGS) -c -o $(BUILD)/ec_all_m15.o src/ec/ec_all_m15.c +$(BUILD)/ec_all_m31.o: src/ec/ec_all_m31.c $(HEADERS) + $(CC) $(CFLAGS) -c -o $(BUILD)/ec_all_m31.o src/ec/ec_all_m31.c + $(BUILD)/ec_c25519_i15.o: src/ec/ec_c25519_i15.c $(HEADERS) $(CC) $(CFLAGS) -c -o $(BUILD)/ec_c25519_i15.o src/ec/ec_c25519_i15.c @@ -183,6 +186,9 @@ $(BUILD)/ec_curve25519.o: src/ec/ec_curve25519.c $(HEADERS) $(BUILD)/ec_p256_m15.o: src/ec/ec_p256_m15.c $(HEADERS) $(CC) $(CFLAGS) -c -o $(BUILD)/ec_p256_m15.o src/ec/ec_p256_m15.c +$(BUILD)/ec_p256_m31.o: src/ec/ec_p256_m31.c $(HEADERS) + $(CC) $(CFLAGS) -c -o $(BUILD)/ec_p256_m31.o src/ec/ec_p256_m31.c + $(BUILD)/ec_prime_i15.o: src/ec/ec_prime_i15.c $(HEADERS) $(CC) $(CFLAGS) -c -o $(BUILD)/ec_prime_i15.o src/ec/ec_prime_i15.c diff --git a/inc/bearssl_ec.h b/inc/bearssl_ec.h index 283be0f..5022530 100644 --- a/inc/bearssl_ec.h +++ b/inc/bearssl_ec.h @@ -436,6 +436,15 @@ extern const br_ec_impl br_ec_prime_i15; */ extern const br_ec_impl br_ec_p256_m15; +/** + * \brief EC implementation "m31" for P-256. + * + * This implementation uses specialised code for curve secp256r1 (also + * known as NIST P-256), relying on multiplications of 31-bit values + * (MUL31). + */ +extern const br_ec_impl br_ec_p256_m31; + /** * \brief EC implementation "i15" (generic code) for Curve25519. * diff --git a/src/ec/ec_all_m31.c b/src/ec/ec_all_m31.c new file mode 100644 index 0000000..0552c4b --- /dev/null +++ b/src/ec/ec_all_m31.c @@ -0,0 +1,121 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +static const unsigned char * +api_generator(int curve, size_t *len) +{ + switch (curve) { + case BR_EC_secp256r1: + return br_ec_p256_m31.generator(curve, len); + case BR_EC_curve25519: + return br_ec_c25519_m31.generator(curve, len); + default: + return br_ec_prime_i31.generator(curve, len); + } +} + +static const unsigned char * +api_order(int curve, size_t *len) +{ + switch (curve) { + case BR_EC_secp256r1: + return br_ec_p256_m31.order(curve, len); + case BR_EC_curve25519: + return br_ec_c25519_m31.order(curve, len); + default: + return br_ec_prime_i31.order(curve, len); + } +} + +static size_t +api_xoff(int curve, size_t *len) +{ + switch (curve) { + case BR_EC_secp256r1: + return br_ec_p256_m31.xoff(curve, len); + case BR_EC_curve25519: + return br_ec_c25519_m31.xoff(curve, len); + default: + return br_ec_prime_i31.xoff(curve, len); + } +} + +static uint32_t +api_mul(unsigned char *G, size_t Glen, + const unsigned char *kb, size_t kblen, int curve) +{ + switch (curve) { + case BR_EC_secp256r1: + return br_ec_p256_m31.mul(G, Glen, kb, kblen, curve); + case BR_EC_curve25519: + return br_ec_c25519_m31.mul(G, Glen, kb, kblen, curve); + default: + return br_ec_prime_i31.mul(G, Glen, kb, kblen, curve); + } +} + +static size_t +api_mulgen(unsigned char *R, + const unsigned char *x, size_t xlen, int curve) +{ + switch (curve) { + case BR_EC_secp256r1: + return br_ec_p256_m31.mulgen(R, x, xlen, curve); + case BR_EC_curve25519: + return br_ec_c25519_m31.mulgen(R, x, xlen, curve); + default: + return br_ec_prime_i31.mulgen(R, x, xlen, curve); + } +} + +static uint32_t +api_muladd(unsigned char *A, const unsigned char *B, size_t len, + const unsigned char *x, size_t xlen, + const unsigned char *y, size_t ylen, int curve) +{ + switch (curve) { + case BR_EC_secp256r1: + return br_ec_p256_m31.muladd(A, B, len, + x, xlen, y, ylen, curve); + case BR_EC_curve25519: + return br_ec_c25519_m31.muladd(A, B, len, + x, xlen, y, ylen, curve); + default: + return br_ec_prime_i31.muladd(A, B, len, + x, xlen, y, ylen, curve); + } +} + +/* see bearssl_ec.h */ +const br_ec_impl br_ec_all_m31 = { + (uint32_t)0x23800000, + &api_generator, + &api_order, + &api_xoff, + &api_mul, + &api_mulgen, + &api_muladd +}; diff --git a/src/ec/ec_c25519_i15.c b/src/ec/ec_c25519_i15.c index d88f19c..361e75f 100644 --- a/src/ec/ec_c25519_i15.c +++ b/src/ec/ec_c25519_i15.c @@ -179,8 +179,14 @@ static uint32_t api_mul(unsigned char *G, size_t Glen, const unsigned char *kb, size_t kblen, int curve) { +#define ILEN (18 * sizeof(uint16_t)) + + /* + * The a[] and b[] arrays have an extra word to allow for + * decoding without using br_i15_decode_reduce(). + */ uint16_t x1[18], x2[18], x3[18], z2[18], z3[18]; - uint16_t a[18], aa[18], b[18], bb[18]; + uint16_t a[19], aa[18], b[19], bb[18]; uint16_t c[18], d[18], e[18], da[18], cb[18]; unsigned char k[32]; uint32_t swap; @@ -205,17 +211,33 @@ api_mul(unsigned char *G, size_t Glen, */ byteswap(G); + /* + * Decode the point ('u' coordinate). This should be reduced + * modulo p, but we prefer to avoid the dependency on + * br_i15_decode_reduce(). Instead, we use br_i15_decode_mod() + * with a synthetic modulus of value 2^255 (this must work + * since G was truncated to 255 bits), then use a conditional + * subtraction. We use br_i15_decode_mod() and not + * br_i15_decode(), because the ec_prime_i15 implementation uses + * the former but not the latter. + * br_i15_decode_reduce(a, G, 32, C255_P); + */ + br_i15_zero(b, 0x111); + b[18] = 1; + br_i15_decode_mod(a, G, 32, b); + a[0] = 0x110; + br_i15_sub(a, C255_P, NOT(br_i15_sub(a, C255_P, 0))); + /* * Initialise variables x1, x2, z2, x3 and z3. We set all of them * into Montgomery representation. */ - br_i15_decode_reduce(a, G, 32, C255_P); br_i15_montymul(x1, a, C255_R2, C255_P, P0I); - memcpy(x3, x1, sizeof x1); + memcpy(x3, x1, ILEN); br_i15_zero(z2, C255_P[0]); - memcpy(x2, z2, sizeof z2); + memcpy(x2, z2, ILEN); x2[1] = 19; - memcpy(z3, x2, sizeof x2); + memcpy(z3, x2, ILEN); memcpy(k, kb, kblen); memset(k + kblen, 0, (sizeof k) - kblen); @@ -291,12 +313,12 @@ api_mul(unsigned char *G, size_t Glen, * square-and-multiply algorithm; we mutualise most non-squarings * since the exponent contains almost only ones. */ - memcpy(a, z2, sizeof z2); + memcpy(a, z2, ILEN); for (i = 0; i < 15; i ++) { c255_mul(a, a, a); c255_mul(a, a, z2); } - memcpy(b, a, sizeof a); + memcpy(b, a, ILEN); for (i = 0; i < 14; i ++) { int j; @@ -311,11 +333,23 @@ api_mul(unsigned char *G, size_t Glen, c255_mul(b, z2, b); } } - c255_mul(x2, x2, b); - br_i15_from_monty(x2, C255_P, P0I); + c255_mul(b, x2, b); + + /* + * To avoid a dependency on br_i15_from_monty(), we use a + * Montgomery multiplication with 1. + * memcpy(x2, b, ILEN); + * br_i15_from_monty(x2, C255_P, P0I); + */ + br_i15_zero(a, C255_P[0]); + a[1] = 1; + br_i15_montymul(x2, a, b, C255_P, P0I); + br_i15_encode(G, 32, x2); byteswap(G); return 1; + +#undef ILEN } static size_t diff --git a/src/ec/ec_c25519_i31.c b/src/ec/ec_c25519_i31.c index 05ebe3c..aa88dd6 100644 --- a/src/ec/ec_c25519_i31.c +++ b/src/ec/ec_c25519_i31.c @@ -202,11 +202,27 @@ api_mul(unsigned char *G, size_t Glen, */ byteswap(G); + /* + * Decode the point ('u' coordinate). This should be reduced + * modulo p, but we prefer to avoid the dependency on + * br_i31_decode_reduce(). Instead, we use br_i31_decode_mod() + * with a synthetic modulus of value 2^255 (this must work + * since G was truncated to 255 bits), then use a conditional + * subtraction. We use br_i31_decode_mod() and not + * br_i31_decode(), because the ec_prime_i31 implementation uses + * the former but not the latter. + * br_i31_decode_reduce(a, G, 32, C255_P); + */ + br_i31_zero(b, 0x108); + b[9] = 0x0100; + br_i31_decode_mod(a, G, 32, b); + a[0] = 0x107; + br_i31_sub(a, C255_P, NOT(br_i31_sub(a, C255_P, 0))); + /* * Initialise variables x1, x2, z2, x3 and z3. We set all of them * into Montgomery representation. */ - br_i31_decode_reduce(a, G, 32, C255_P); br_i31_montymul(x1, a, C255_R2, C255_P, P0I); memcpy(x3, x1, sizeof x1); br_i31_zero(z2, C255_P[0]); @@ -308,8 +324,18 @@ api_mul(unsigned char *G, size_t Glen, c255_mul(b, z2, b); } } - c255_mul(x2, x2, b); - br_i31_from_monty(x2, C255_P, P0I); + c255_mul(b, x2, b); + + /* + * To avoid a dependency on br_i31_from_monty(), we use + * a Montgomery multiplication with 1. + * memcpy(x2, b, sizeof b); + * br_i31_from_monty(x2, C255_P, P0I); + */ + br_i31_zero(a, C255_P[0]); + a[1] = 1; + br_i31_montymul(x2, a, b, C255_P, P0I); + br_i31_encode(G, 32, x2); byteswap(G); return 1; diff --git a/src/ec/ec_p256_m15.c b/src/ec/ec_p256_m15.c index 0d40aef..06eee86 100644 --- a/src/ec/ec_p256_m15.c +++ b/src/ec/ec_p256_m15.c @@ -1101,18 +1101,20 @@ mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b) } /* - * Propagate carries. Since the operation above really is a - * truncature, followed by the addition of nonnegative values, - * the result will be positive. Moreover, the carry cannot - * exceed 5 bits (we performed 20 additions with values smaller - * than 256 bits). + * Propagate carries. This is a signed propagation, and the + * result may be negative. The loop above may enlarge values, + * but not two much: worst case is the chain involving t[i - 3], + * in which a value may be added to itself up to 7 times. Since + * starting values are 13-bit each, all words fit on 20 bits + * (21 to account for the sign bit). */ cc = norm13(t, t, 20); /* * Perform modular reduction again for the bits beyond 256 (the carry - * and the bits 256..259). This time, we can simply inject full - * word values. + * and the bits 256..259). Since the largest shift below is by 10 + * bits, and the values fit on 21 bits, values fit in 32-bit words, + * thereby allowing injecting full word values. */ cc = (cc << 4) | (t[19] >> 9); t[19] &= 0x01FF; @@ -1172,18 +1174,20 @@ square_f256(uint32_t *d, const uint32_t *a) } /* - * Propagate carries. Since the operation above really is a - * truncature, followed by the addition of nonnegative values, - * the result will be positive. Moreover, the carry cannot - * exceed 5 bits (we performed 20 additions with values smaller - * than 256 bits). + * Propagate carries. This is a signed propagation, and the + * result may be negative. The loop above may enlarge values, + * but not two much: worst case is the chain involving t[i - 3], + * in which a value may be added to itself up to 7 times. Since + * starting values are 13-bit each, all words fit on 20 bits + * (21 to account for the sign bit). */ cc = norm13(t, t, 20); /* * Perform modular reduction again for the bits beyond 256 (the carry - * and the bits 256..259). This time, we can simply inject full - * word values. + * and the bits 256..259). Since the largest shift below is by 10 + * bits, and the values fit on 21 bits, values fit in 32-bit words, + * thereby allowing injecting full word values. */ cc = (cc << 4) | (t[19] >> 9); t[19] &= 0x01FF; diff --git a/src/ec/ec_p256_m31.c b/src/ec/ec_p256_m31.c new file mode 100644 index 0000000..0631a13 --- /dev/null +++ b/src/ec/ec_p256_m31.c @@ -0,0 +1,1447 @@ +/* + * Copyright (c) 2017 Thomas Pornin + * + * Permission is hereby granted, free of charge, to any person obtaining + * a copy of this software and associated documentation files (the + * "Software"), to deal in the Software without restriction, including + * without limitation the rights to use, copy, modify, merge, publish, + * distribute, sublicense, and/or sell copies of the Software, and to + * permit persons to whom the Software is furnished to do so, subject to + * the following conditions: + * + * The above copyright notice and this permission notice shall be + * included in all copies or substantial portions of the Software. + * + * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, + * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF + * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND + * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS + * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN + * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN + * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE + * SOFTWARE. + */ + +#include "inner.h" + +/* + * If BR_NO_ARITH_SHIFT is undefined, or defined to 0, then we _assume_ + * that right-shifting a signed negative integer copies the sign bit + * (arithmetic right-shift). This is "implementation-defined behaviour", + * i.e. it is not undefined, but it may differ between compilers. Each + * compiler is supposed to document its behaviour in that respect. GCC + * explicitly defines that an arithmetic right shift is used. We expect + * all other compilers to do the same, because underlying CPU offer an + * arithmetic right shift opcode that could not be used otherwise. + */ +#if BR_NO_ARITH_SHIFT +#define ARSH(x, n) (((uint32_t)(x) >> (n)) \ + | ((-((uint32_t)(x) >> 31)) << (32 - (n)))) +#define ARSHW(x, n) (((uint64_t)(x) >> (n)) \ + | ((-((uint64_t)(x) >> 63)) << (64 - (n)))) +#else +#define ARSH(x, n) ((*(int32_t *)&(x)) >> (n)) +#define ARSHW(x, n) ((*(int64_t *)&(x)) >> (n)) +#endif + +/* + * Convert an integer from unsigned big-endian encoding to a sequence of + * 30-bit words in little-endian order. The final "partial" word is + * returned. + */ +static uint32_t +be8_to_le30(uint32_t *dst, const unsigned char *src, size_t len) +{ + uint32_t acc; + int acc_len; + + acc = 0; + acc_len = 0; + while (len -- > 0) { + uint32_t b; + + b = src[len]; + if (acc_len < 22) { + acc |= b << acc_len; + acc_len += 8; + } else { + *dst ++ = (acc | (b << acc_len)) & 0x3FFFFFFF; + acc = b >> (30 - acc_len); + acc_len -= 22; + } + } + return acc; +} + +/* + * Convert an integer (30-bit words, little-endian) to unsigned + * big-endian encoding. The total encoding length is provided; all + * the destination bytes will be filled. + */ +static void +le30_to_be8(unsigned char *dst, size_t len, const uint32_t *src) +{ + uint32_t acc; + int acc_len; + + acc = 0; + acc_len = 0; + while (len -- > 0) { + if (acc_len < 8) { + uint32_t w; + + w = *src ++; + dst[len] = (unsigned char)(acc | (w << acc_len)); + acc = w >> (8 - acc_len); + acc_len += 22; + } else { + dst[len] = (unsigned char)acc; + acc >>= 8; + acc_len -= 8; + } + } +} + +/* + * Multiply two integers. Source integers are represented as arrays of + * nine 30-bit words, for values up to 2^270-1. Result is encoded over + * 18 words of 30 bits each. + */ +static void +mul9(uint32_t *d, const uint32_t *a, const uint32_t *b) +{ + /* + * Maximum intermediate result is no more than + * 10376293531797946367, which fits in 64 bits. Reason: + * + * 10376293531797946367 = 9 * (2^30-1)^2 + 9663676406 + * 10376293531797946367 < 9663676407 * 2^30 + * + * Thus, adding together 9 products of 30-bit integers, with + * a carry of at most 9663676406, yields an integer that fits + * on 64 bits and generates a carry of at most 9663676406. + */ + uint64_t t[17]; + uint64_t cc; + int i; + + t[ 0] = MUL31(a[0], b[0]); + t[ 1] = MUL31(a[0], b[1]) + + MUL31(a[1], b[0]); + t[ 2] = MUL31(a[0], b[2]) + + MUL31(a[1], b[1]) + + MUL31(a[2], b[0]); + t[ 3] = MUL31(a[0], b[3]) + + MUL31(a[1], b[2]) + + MUL31(a[2], b[1]) + + MUL31(a[3], b[0]); + t[ 4] = MUL31(a[0], b[4]) + + MUL31(a[1], b[3]) + + MUL31(a[2], b[2]) + + MUL31(a[3], b[1]) + + MUL31(a[4], b[0]); + t[ 5] = MUL31(a[0], b[5]) + + MUL31(a[1], b[4]) + + MUL31(a[2], b[3]) + + MUL31(a[3], b[2]) + + MUL31(a[4], b[1]) + + MUL31(a[5], b[0]); + t[ 6] = MUL31(a[0], b[6]) + + MUL31(a[1], b[5]) + + MUL31(a[2], b[4]) + + MUL31(a[3], b[3]) + + MUL31(a[4], b[2]) + + MUL31(a[5], b[1]) + + MUL31(a[6], b[0]); + t[ 7] = MUL31(a[0], b[7]) + + MUL31(a[1], b[6]) + + MUL31(a[2], b[5]) + + MUL31(a[3], b[4]) + + MUL31(a[4], b[3]) + + MUL31(a[5], b[2]) + + MUL31(a[6], b[1]) + + MUL31(a[7], b[0]); + t[ 8] = MUL31(a[0], b[8]) + + MUL31(a[1], b[7]) + + MUL31(a[2], b[6]) + + MUL31(a[3], b[5]) + + MUL31(a[4], b[4]) + + MUL31(a[5], b[3]) + + MUL31(a[6], b[2]) + + MUL31(a[7], b[1]) + + MUL31(a[8], b[0]); + t[ 9] = MUL31(a[1], b[8]) + + MUL31(a[2], b[7]) + + MUL31(a[3], b[6]) + + MUL31(a[4], b[5]) + + MUL31(a[5], b[4]) + + MUL31(a[6], b[3]) + + MUL31(a[7], b[2]) + + MUL31(a[8], b[1]); + t[10] = MUL31(a[2], b[8]) + + MUL31(a[3], b[7]) + + MUL31(a[4], b[6]) + + MUL31(a[5], b[5]) + + MUL31(a[6], b[4]) + + MUL31(a[7], b[3]) + + MUL31(a[8], b[2]); + t[11] = MUL31(a[3], b[8]) + + MUL31(a[4], b[7]) + + MUL31(a[5], b[6]) + + MUL31(a[6], b[5]) + + MUL31(a[7], b[4]) + + MUL31(a[8], b[3]); + t[12] = MUL31(a[4], b[8]) + + MUL31(a[5], b[7]) + + MUL31(a[6], b[6]) + + MUL31(a[7], b[5]) + + MUL31(a[8], b[4]); + t[13] = MUL31(a[5], b[8]) + + MUL31(a[6], b[7]) + + MUL31(a[7], b[6]) + + MUL31(a[8], b[5]); + t[14] = MUL31(a[6], b[8]) + + MUL31(a[7], b[7]) + + MUL31(a[8], b[6]); + t[15] = MUL31(a[7], b[8]) + + MUL31(a[8], b[7]); + t[16] = MUL31(a[8], b[8]); + + /* + * Propagate carries. + */ + cc = 0; + for (i = 0; i < 17; i ++) { + uint64_t w; + + w = t[i] + cc; + d[i] = (uint32_t)w & 0x3FFFFFFF; + cc = w >> 30; + } + d[17] = (uint32_t)cc; +} + +/* + * Square a 270-bit integer, represented as an array of nine 30-bit words. + * Result uses 18 words of 30 bits each. + */ +static void +square9(uint32_t *d, const uint32_t *a) +{ + uint64_t t[17]; + uint64_t cc; + int i; + + t[ 0] = MUL31(a[0], a[0]); + t[ 1] = ((MUL31(a[0], a[1])) << 1); + t[ 2] = MUL31(a[1], a[1]) + + ((MUL31(a[0], a[2])) << 1); + t[ 3] = ((MUL31(a[0], a[3]) + + MUL31(a[1], a[2])) << 1); + t[ 4] = MUL31(a[2], a[2]) + + ((MUL31(a[0], a[4]) + + MUL31(a[1], a[3])) << 1); + t[ 5] = ((MUL31(a[0], a[5]) + + MUL31(a[1], a[4]) + + MUL31(a[2], a[3])) << 1); + t[ 6] = MUL31(a[3], a[3]) + + ((MUL31(a[0], a[6]) + + MUL31(a[1], a[5]) + + MUL31(a[2], a[4])) << 1); + t[ 7] = ((MUL31(a[0], a[7]) + + MUL31(a[1], a[6]) + + MUL31(a[2], a[5]) + + MUL31(a[3], a[4])) << 1); + t[ 8] = MUL31(a[4], a[4]) + + ((MUL31(a[0], a[8]) + + MUL31(a[1], a[7]) + + MUL31(a[2], a[6]) + + MUL31(a[3], a[5])) << 1); + t[ 9] = ((MUL31(a[1], a[8]) + + MUL31(a[2], a[7]) + + MUL31(a[3], a[6]) + + MUL31(a[4], a[5])) << 1); + t[10] = MUL31(a[5], a[5]) + + ((MUL31(a[2], a[8]) + + MUL31(a[3], a[7]) + + MUL31(a[4], a[6])) << 1); + t[11] = ((MUL31(a[3], a[8]) + + MUL31(a[4], a[7]) + + MUL31(a[5], a[6])) << 1); + t[12] = MUL31(a[6], a[6]) + + ((MUL31(a[4], a[8]) + + MUL31(a[5], a[7])) << 1); + t[13] = ((MUL31(a[5], a[8]) + + MUL31(a[6], a[7])) << 1); + t[14] = MUL31(a[7], a[7]) + + ((MUL31(a[6], a[8])) << 1); + t[15] = ((MUL31(a[7], a[8])) << 1); + t[16] = MUL31(a[8], a[8]); + + /* + * Propagate carries. + */ + cc = 0; + for (i = 0; i < 17; i ++) { + uint64_t w; + + w = t[i] + cc; + d[i] = (uint32_t)w & 0x3FFFFFFF; + cc = w >> 30; + } + d[17] = (uint32_t)cc; +} + +/* + * Base field modulus for P-256. + */ +static const uint32_t F256[] = { + + 0x3FFFFFFF, 0x3FFFFFFF, 0x3FFFFFFF, 0x0000003F, 0x00000000, + 0x00000000, 0x00001000, 0x3FFFC000, 0x0000FFFF +}; + +/* + * The 'b' curve equation coefficient for P-256. + */ +static const uint32_t P256_B[] = { + + 0x27D2604B, 0x2F38F0F8, 0x053B0F63, 0x0741AC33, 0x1886BC65, + 0x2EF555DA, 0x293E7B3E, 0x0D762A8E, 0x00005AC6 +}; + +/* + * Addition in the field. Source operands shall fit on 257 bits; output + * will be lower than twice the modulus. + */ +static void +add_f256(uint32_t *d, const uint32_t *a, const uint32_t *b) +{ + uint32_t w, cc; + int i; + + cc = 0; + for (i = 0; i < 9; i ++) { + w = a[i] + b[i] + cc; + d[i] = w & 0x3FFFFFFF; + cc = w >> 30; + } + w >>= 16; + d[8] &= 0xFFFF; + d[3] -= w << 6; + d[6] -= w << 12; + d[7] += w << 14; + cc = w; + for (i = 0; i < 9; i ++) { + w = d[i] + cc; + d[i] = w & 0x3FFFFFFF; + cc = ARSH(w, 30); + } +} + +/* + * Subtraction in the field. Source operands shall be smaller than twice + * the modulus; the result will fulfil the same property. + */ +static void +sub_f256(uint32_t *d, const uint32_t *a, const uint32_t *b) +{ + uint32_t w, cc; + int i; + + /* + * We really compute a - b + 2*p to make sure that the result is + * positive. + */ + w = a[0] - b[0] - 0x00002; + d[0] = w & 0x3FFFFFFF; + w = a[1] - b[1] + ARSH(w, 30); + d[1] = w & 0x3FFFFFFF; + w = a[2] - b[2] + ARSH(w, 30); + d[2] = w & 0x3FFFFFFF; + w = a[3] - b[3] + ARSH(w, 30) + 0x00080; + d[3] = w & 0x3FFFFFFF; + w = a[4] - b[4] + ARSH(w, 30); + d[4] = w & 0x3FFFFFFF; + w = a[5] - b[5] + ARSH(w, 30); + d[5] = w & 0x3FFFFFFF; + w = a[6] - b[6] + ARSH(w, 30) + 0x02000; + d[6] = w & 0x3FFFFFFF; + w = a[7] - b[7] + ARSH(w, 30) - 0x08000; + d[7] = w & 0x3FFFFFFF; + w = a[8] - b[8] + ARSH(w, 30) + 0x20000; + d[8] = w & 0xFFFF; + w >>= 16; + d[8] &= 0xFFFF; + d[3] -= w << 6; + d[6] -= w << 12; + d[7] += w << 14; + cc = w; + for (i = 0; i < 9; i ++) { + w = d[i] + cc; + d[i] = w & 0x3FFFFFFF; + cc = ARSH(w, 30); + } +} + +/* + * Compute a multiplication in F256. Source operands shall be less than + * twice the modulus. + */ +static void +mul_f256(uint32_t *d, const uint32_t *a, const uint32_t *b) +{ + uint32_t t[18]; + uint64_t s[18]; + uint64_t cc, x; + uint32_t z; + int i; + + mul9(t, a, b); + + /* + * Modular reduction: each high word in added/subtracted where + * necessary. + * + * The modulus is: + * p = 2^256 - 2^224 + 2^192 + 2^96 - 1 + * Therefore: + * 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p + * + * For a word x at bit offset n (n >= 256), we have: + * x*2^n = x*2^(n-32) - x*2^(n-64) + * - x*2^(n - 160) + x*2^(n-256) mod p + * + * Thus, we can nullify the high word if we reinject it at some + * proper emplacements. + * + * We use 64-bit intermediate words to allow for carries to + * accumulate easily, before performing the final propagation. + */ + for (i = 0; i < 18; i ++) { + s[i] = t[i]; + } + + for (i = 17; i >= 9; i --) { + uint64_t x; + + x = s[i]; + s[i - 1] += ARSHW(x, 2); + s[i - 2] += (x << 28) & 0x3FFFFFFF; + s[i - 2] -= ARSHW(x, 4); + s[i - 3] -= (x << 26) & 0x3FFFFFFF; + s[i - 5] -= ARSHW(x, 10); + s[i - 6] -= (x << 20) & 0x3FFFFFFF; + s[i - 8] += ARSHW(x, 16); + s[i - 9] += (x << 14) & 0x3FFFFFFF; + } + + /* + * Carry propagation must be signed. Moreover, we may have overdone + * it a bit, and obtain a negative result. + * + * The loop above ran 9 times; each time, each word was augmented + * by at most one extra word (in absolute value). Thus, the top + * word must in fine fit in 39 bits, so the carry below will fit + * on 9 bits. + */ + cc = 0; + for (i = 0; i < 9; i ++) { + x = s[i] + cc; + d[i] = (uint32_t)x & 0x3FFFFFFF; + cc = ARSHW(x, 30); + } + + /* + * All nine words fit on 30 bits, but there may be an extra + * carry for a few bits (at most 9), and that carry may be + * negative. Moreover, we want the result to fit on 257 bits. + * The two lines below ensure that the word in d[] has length + * 256 bits, and the (signed) carry (beyond 2^256) is in cc. The + * significant length of cc is less than 24 bits, so we will be + * able to switch to 32-bit operations. + */ + cc = ARSHW(x, 16); + d[8] &= 0xFFFF; + + /* + * Subtract cc*p. + */ + z = (uint32_t)cc; + d[3] -= z << 6; + d[6] -= (z << 12) & 0x3FFFFFFF; + d[7] -= ARSH(z, 18); + d[7] += (z << 14) & 0x3FFFFFFF; + d[8] += ARSH(z, 16); + for (i = 0; i < 9; i ++) { + uint32_t w; + + w = d[i] + z; + d[i] = w & 0x3FFFFFFF; + z = ARSH(w, 30); + } +} + +/* + * Compute a square in F256. Source operand shall be less than + * twice the modulus. + */ +static void +square_f256(uint32_t *d, const uint32_t *a) +{ + uint32_t t[18]; + uint64_t s[18]; + uint64_t cc, x; + uint32_t z; + int i; + + square9(t, a); + + /* + * Modular reduction: each high word in added/subtracted where + * necessary. + * + * The modulus is: + * p = 2^256 - 2^224 + 2^192 + 2^96 - 1 + * Therefore: + * 2^256 = 2^224 - 2^192 - 2^96 + 1 mod p + * + * For a word x at bit offset n (n >= 256), we have: + * x*2^n = x*2^(n-32) - x*2^(n-64) + * - x*2^(n - 160) + x*2^(n-256) mod p + * + * Thus, we can nullify the high word if we reinject it at some + * proper emplacements. + * + * We use 64-bit intermediate words to allow for carries to + * accumulate easily, before performing the final propagation. + */ + for (i = 0; i < 18; i ++) { + s[i] = t[i]; + } + + for (i = 17; i >= 9; i --) { + uint64_t x; + + x = s[i]; + s[i - 1] += ARSHW(x, 2); + s[i - 2] += (x << 28) & 0x3FFFFFFF; + s[i - 2] -= ARSHW(x, 4); + s[i - 3] -= (x << 26) & 0x3FFFFFFF; + s[i - 5] -= ARSHW(x, 10); + s[i - 6] -= (x << 20) & 0x3FFFFFFF; + s[i - 8] += ARSHW(x, 16); + s[i - 9] += (x << 14) & 0x3FFFFFFF; + } + + /* + * Carry propagation must be signed. Moreover, we may have overdone + * it a bit, and obtain a negative result. + * + * The loop above ran 9 times; each time, each word was augmented + * by at most one extra word (in absolute value). Thus, the top + * word must in fine fit in 39 bits, so the carry below will fit + * on 9 bits. + */ + cc = 0; + for (i = 0; i < 9; i ++) { + x = s[i] + cc; + d[i] = (uint32_t)x & 0x3FFFFFFF; + cc = ARSHW(x, 30); + } + + /* + * All nine words fit on 30 bits, but there may be an extra + * carry for a few bits (at most 9), and that carry may be + * negative. Moreover, we want the result to fit on 257 bits. + * The two lines below ensure that the word in d[] has length + * 256 bits, and the (signed) carry (beyond 2^256) is in cc. The + * significant length of cc is less than 24 bits, so we will be + * able to switch to 32-bit operations. + */ + cc = ARSHW(x, 16); + d[8] &= 0xFFFF; + + /* + * Subtract cc*p. + */ + z = (uint32_t)cc; + d[3] -= z << 6; + d[6] -= (z << 12) & 0x3FFFFFFF; + d[7] -= ARSH(z, 18); + d[7] += (z << 14) & 0x3FFFFFFF; + d[8] += ARSH(z, 16); + for (i = 0; i < 9; i ++) { + uint32_t w; + + w = d[i] + z; + d[i] = w & 0x3FFFFFFF; + z = ARSH(w, 30); + } +} + +/* + * Perform a "final reduction" in field F256 (field for curve P-256). + * The source value must be less than twice the modulus. If the value + * is not lower than the modulus, then the modulus is subtracted and + * this function returns 1; otherwise, it leaves it untouched and it + * returns 0. + */ +static uint32_t +reduce_final_f256(uint32_t *d) +{ + uint32_t t[9]; + uint32_t cc; + int i; + + cc = 0; + for (i = 0; i < 9; i ++) { + uint32_t w; + + w = d[i] - F256[i] - cc; + cc = w >> 31; + t[i] = w & 0x3FFFFFFF; + } + cc ^= 1; + CCOPY(cc, d, t, sizeof t); + return cc; +} + +/* + * Jacobian coordinates for a point in P-256: affine coordinates (X,Y) + * are such that: + * X = x / z^2 + * Y = y / z^3 + * For the point at infinity, z = 0. + * Each point thus admits many possible representations. + * + * Coordinates are represented in arrays of 32-bit integers, each holding + * 30 bits of data. Values may also be slightly greater than the modulus, + * but they will always be lower than twice the modulus. + */ +typedef struct { + uint32_t x[9]; + uint32_t y[9]; + uint32_t z[9]; +} p256_jacobian; + +/* + * Convert a point to affine coordinates: + * - If the point is the point at infinity, then all three coordinates + * are set to 0. + * - Otherwise, the 'z' coordinate is set to 1, and the 'x' and 'y' + * coordinates are the 'X' and 'Y' affine coordinates. + * The coordinates are guaranteed to be lower than the modulus. + */ +static void +p256_to_affine(p256_jacobian *P) +{ + uint32_t t1[9], t2[9]; + int i; + + /* + * Invert z with a modular exponentiation: the modulus is + * p = 2^256 - 2^224 + 2^192 + 2^96 - 1, and the exponent is + * p-2. Exponent bit pattern (from high to low) is: + * - 32 bits of value 1 + * - 31 bits of value 0 + * - 1 bit of value 1 + * - 96 bits of value 0 + * - 94 bits of value 1 + * - 1 bit of value 0 + * - 1 bit of value 1 + * Thus, we precompute z^(2^31-1) to speed things up. + * + * If z = 0 (point at infinity) then the modular exponentiation + * will yield 0, which leads to the expected result (all three + * coordinates set to 0). + */ + + /* + * A simple square-and-multiply for z^(2^31-1). We could save about + * two dozen multiplications here with an addition chain, but + * this would require a bit more code, and extra stack buffers. + */ + memcpy(t1, P->z, sizeof P->z); + for (i = 0; i < 30; i ++) { + square_f256(t1, t1); + mul_f256(t1, t1, P->z); + } + + /* + * Square-and-multiply. Apart from the squarings, we have a few + * multiplications to set bits to 1; we multiply by the original z + * for setting 1 bit, and by t1 for setting 31 bits. + */ + memcpy(t2, P->z, sizeof P->z); + for (i = 1; i < 256; i ++) { + square_f256(t2, t2); + switch (i) { + case 31: + case 190: + case 221: + case 252: + mul_f256(t2, t2, t1); + break; + case 63: + case 253: + case 255: + mul_f256(t2, t2, P->z); + break; + } + } + + /* + * Now that we have 1/z, multiply x by 1/z^2 and y by 1/z^3. + */ + mul_f256(t1, t2, t2); + mul_f256(P->x, t1, P->x); + mul_f256(t1, t1, t2); + mul_f256(P->y, t1, P->y); + reduce_final_f256(P->x); + reduce_final_f256(P->y); + + /* + * Multiply z by 1/z. If z = 0, then this will yield 0, otherwise + * this will set z to 1. + */ + mul_f256(P->z, P->z, t2); + reduce_final_f256(P->z); +} + +/* + * Double a point in P-256. This function works for all valid points, + * including the point at infinity. + */ +static void +p256_double(p256_jacobian *Q) +{ + /* + * Doubling formulas are: + * + * s = 4*x*y^2 + * m = 3*(x + z^2)*(x - z^2) + * x' = m^2 - 2*s + * y' = m*(s - x') - 8*y^4 + * z' = 2*y*z + * + * These formulas work for all points, including points of order 2 + * and points at infinity: + * - If y = 0 then z' = 0. But there is no such point in P-256 + * anyway. + * - If z = 0 then z' = 0. + */ + uint32_t t1[9], t2[9], t3[9], t4[9]; + + /* + * Compute z^2 in t1. + */ + square_f256(t1, Q->z); + + /* + * Compute x-z^2 in t2 and x+z^2 in t1. + */ + add_f256(t2, Q->x, t1); + sub_f256(t1, Q->x, t1); + + /* + * Compute 3*(x+z^2)*(x-z^2) in t1. + */ + mul_f256(t3, t1, t2); + add_f256(t1, t3, t3); + add_f256(t1, t3, t1); + + /* + * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3). + */ + square_f256(t3, Q->y); + add_f256(t3, t3, t3); + mul_f256(t2, Q->x, t3); + add_f256(t2, t2, t2); + + /* + * Compute x' = m^2 - 2*s. + */ + square_f256(Q->x, t1); + sub_f256(Q->x, Q->x, t2); + sub_f256(Q->x, Q->x, t2); + + /* + * Compute z' = 2*y*z. + */ + mul_f256(t4, Q->y, Q->z); + add_f256(Q->z, t4, t4); + + /* + * Compute y' = m*(s - x') - 8*y^4. Note that we already have + * 2*y^2 in t3. + */ + sub_f256(t2, t2, Q->x); + mul_f256(Q->y, t1, t2); + square_f256(t4, t3); + add_f256(t4, t4, t4); + sub_f256(Q->y, Q->y, t4); +} + +/* + * Add point P2 to point P1. + * + * This function computes the wrong result in the following cases: + * + * - If P1 == 0 but P2 != 0 + * - If P1 != 0 but P2 == 0 + * - If P1 == P2 + * + * In all three cases, P1 is set to the point at infinity. + * + * Returned value is 0 if one of the following occurs: + * + * - P1 and P2 have the same Y coordinate + * - P1 == 0 and P2 == 0 + * - The Y coordinate of one of the points is 0 and the other point is + * the point at infinity. + * + * The third case cannot actually happen with valid points, since a point + * with Y == 0 is a point of order 2, and there is no point of order 2 on + * curve P-256. + * + * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller + * can apply the following: + * + * - If the result is not the point at infinity, then it is correct. + * - Otherwise, if the returned value is 1, then this is a case of + * P1+P2 == 0, so the result is indeed the point at infinity. + * - Otherwise, P1 == P2, so a "double" operation should have been + * performed. + */ +static uint32_t +p256_add(p256_jacobian *P1, const p256_jacobian *P2) +{ + /* + * Addtions formulas are: + * + * u1 = x1 * z2^2 + * u2 = x2 * z1^2 + * s1 = y1 * z2^3 + * s2 = y2 * z1^3 + * h = u2 - u1 + * r = s2 - s1 + * x3 = r^2 - h^3 - 2 * u1 * h^2 + * y3 = r * (u1 * h^2 - x3) - s1 * h^3 + * z3 = h * z1 * z2 + */ + uint32_t t1[9], t2[9], t3[9], t4[9], t5[9], t6[9], t7[9]; + uint32_t ret; + int i; + + /* + * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3). + */ + square_f256(t3, P2->z); + mul_f256(t1, P1->x, t3); + mul_f256(t4, P2->z, t3); + mul_f256(t3, P1->y, t4); + + /* + * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). + */ + square_f256(t4, P1->z); + mul_f256(t2, P2->x, t4); + mul_f256(t5, P1->z, t4); + mul_f256(t4, P2->y, t5); + + /* + * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). + * We need to test whether r is zero, so we will do some extra + * reduce. + */ + sub_f256(t2, t2, t1); + sub_f256(t4, t4, t3); + reduce_final_f256(t4); + ret = 0; + for (i = 0; i < 9; i ++) { + ret |= t4[i]; + } + ret = (ret | -ret) >> 31; + + /* + * Compute u1*h^2 (in t6) and h^3 (in t5); + */ + square_f256(t7, t2); + mul_f256(t6, t1, t7); + mul_f256(t5, t7, t2); + + /* + * Compute x3 = r^2 - h^3 - 2*u1*h^2. + */ + square_f256(P1->x, t4); + sub_f256(P1->x, P1->x, t5); + sub_f256(P1->x, P1->x, t6); + sub_f256(P1->x, P1->x, t6); + + /* + * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. + */ + sub_f256(t6, t6, P1->x); + mul_f256(P1->y, t4, t6); + mul_f256(t1, t5, t3); + sub_f256(P1->y, P1->y, t1); + + /* + * Compute z3 = h*z1*z2. + */ + mul_f256(t1, P1->z, P2->z); + mul_f256(P1->z, t1, t2); + + return ret; +} + +/* + * Add point P2 to point P1. This is a specialised function for the + * case when P2 is a non-zero point in affine coordinate. + * + * This function computes the wrong result in the following cases: + * + * - If P1 == 0 + * - If P1 == P2 + * + * In both cases, P1 is set to the point at infinity. + * + * Returned value is 0 if one of the following occurs: + * + * - P1 and P2 have the same Y coordinate + * - The Y coordinate of P2 is 0 and P1 is the point at infinity. + * + * The second case cannot actually happen with valid points, since a point + * with Y == 0 is a point of order 2, and there is no point of order 2 on + * curve P-256. + * + * Therefore, assuming that P1 != 0 on input, then the caller + * can apply the following: + * + * - If the result is not the point at infinity, then it is correct. + * - Otherwise, if the returned value is 1, then this is a case of + * P1+P2 == 0, so the result is indeed the point at infinity. + * - Otherwise, P1 == P2, so a "double" operation should have been + * performed. + */ +static uint32_t +p256_add_mixed(p256_jacobian *P1, const p256_jacobian *P2) +{ + /* + * Addtions formulas are: + * + * u1 = x1 + * u2 = x2 * z1^2 + * s1 = y1 + * s2 = y2 * z1^3 + * h = u2 - u1 + * r = s2 - s1 + * x3 = r^2 - h^3 - 2 * u1 * h^2 + * y3 = r * (u1 * h^2 - x3) - s1 * h^3 + * z3 = h * z1 + */ + uint32_t t1[9], t2[9], t3[9], t4[9], t5[9], t6[9], t7[9]; + uint32_t ret; + int i; + + /* + * Compute u1 = x1 (in t1) and s1 = y1 (in t3). + */ + memcpy(t1, P1->x, sizeof t1); + memcpy(t3, P1->y, sizeof t3); + + /* + * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4). + */ + square_f256(t4, P1->z); + mul_f256(t2, P2->x, t4); + mul_f256(t5, P1->z, t4); + mul_f256(t4, P2->y, t5); + + /* + * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4). + * We need to test whether r is zero, so we will do some extra + * reduce. + */ + sub_f256(t2, t2, t1); + sub_f256(t4, t4, t3); + reduce_final_f256(t4); + ret = 0; + for (i = 0; i < 9; i ++) { + ret |= t4[i]; + } + ret = (ret | -ret) >> 31; + + /* + * Compute u1*h^2 (in t6) and h^3 (in t5); + */ + square_f256(t7, t2); + mul_f256(t6, t1, t7); + mul_f256(t5, t7, t2); + + /* + * Compute x3 = r^2 - h^3 - 2*u1*h^2. + */ + square_f256(P1->x, t4); + sub_f256(P1->x, P1->x, t5); + sub_f256(P1->x, P1->x, t6); + sub_f256(P1->x, P1->x, t6); + + /* + * Compute y3 = r*(u1*h^2 - x3) - s1*h^3. + */ + sub_f256(t6, t6, P1->x); + mul_f256(P1->y, t4, t6); + mul_f256(t1, t5, t3); + sub_f256(P1->y, P1->y, t1); + + /* + * Compute z3 = h*z1*z2. + */ + mul_f256(P1->z, P1->z, t2); + + return ret; +} + +/* + * Decode a P-256 point. This function does not support the point at + * infinity. Returned value is 0 if the point is invalid, 1 otherwise. + */ +static uint32_t +p256_decode(p256_jacobian *P, const void *src, size_t len) +{ + const unsigned char *buf; + uint32_t tx[9], ty[9], t1[9], t2[9]; + uint32_t bad; + int i; + + if (len != 65) { + return 0; + } + buf = src; + + /* + * First byte must be 0x04 (uncompressed format). We could support + * "hybrid format" (first byte is 0x06 or 0x07, and encodes the + * least significant bit of the Y coordinate), but it is explicitly + * forbidden by RFC 5480 (section 2.2). + */ + bad = NEQ(buf[0], 0x04); + + /* + * Decode the coordinates, and check that they are both lower + * than the modulus. + */ + tx[8] = be8_to_le30(tx, buf + 1, 32); + ty[8] = be8_to_le30(ty, buf + 33, 32); + bad |= reduce_final_f256(tx); + bad |= reduce_final_f256(ty); + + /* + * Check curve equation. + */ + square_f256(t1, tx); + mul_f256(t1, tx, t1); + square_f256(t2, ty); + sub_f256(t1, t1, tx); + sub_f256(t1, t1, tx); + sub_f256(t1, t1, tx); + add_f256(t1, t1, P256_B); + sub_f256(t1, t1, t2); + reduce_final_f256(t1); + for (i = 0; i < 9; i ++) { + bad |= t1[i]; + } + + /* + * Copy coordinates to the point structure. + */ + memcpy(P->x, tx, sizeof tx); + memcpy(P->y, ty, sizeof ty); + memset(P->z, 0, sizeof P->z); + P->z[0] = 1; + return NEQ(bad, 0) ^ 1; +} + +/* + * Encode a point into a buffer. This function assumes that the point is + * valid, in affine coordinates, and not the point at infinity. + */ +static void +p256_encode(void *dst, const p256_jacobian *P) +{ + unsigned char *buf; + + buf = dst; + buf[0] = 0x04; + le30_to_be8(buf + 1, 32, P->x); + le30_to_be8(buf + 33, 32, P->y); +} + +/* + * Multiply a curve point by an integer. The integer is assumed to be + * lower than the curve order, and the base point must not be the point + * at infinity. + */ +static void +p256_mul(p256_jacobian *P, const unsigned char *x, size_t xlen) +{ + /* + * qz is a flag that is initially 1, and remains equal to 1 + * as long as the point is the point at infinity. + * + * We use a 2-bit window to handle multiplier bits by pairs. + * The precomputed window really is the points P2 and P3. + */ + uint32_t qz; + p256_jacobian P2, P3, Q, T, U; + + /* + * Compute window values. + */ + P2 = *P; + p256_double(&P2); + P3 = *P; + p256_add(&P3, &P2); + + /* + * We start with Q = 0. We process multiplier bits 2 by 2. + */ + memset(&Q, 0, sizeof Q); + qz = 1; + while (xlen -- > 0) { + int k; + + for (k = 6; k >= 0; k -= 2) { + uint32_t bits; + uint32_t bnz; + + p256_double(&Q); + p256_double(&Q); + T = *P; + U = Q; + bits = (*x >> k) & (uint32_t)3; + bnz = NEQ(bits, 0); + CCOPY(EQ(bits, 2), &T, &P2, sizeof T); + CCOPY(EQ(bits, 3), &T, &P3, sizeof T); + p256_add(&U, &T); + CCOPY(bnz & qz, &Q, &T, sizeof Q); + CCOPY(bnz & ~qz, &Q, &U, sizeof Q); + qz &= ~bnz; + } + x ++; + } + *P = Q; +} + +/* + * Precomputed window: k*G points, where G is the curve generator, and k + * is an integer from 1 to 15 (inclusive). The X and Y coordinates of + * the point are encoded as 9 words of 30 bits each (little-endian + * order). + */ +static const uint32_t Gwin[15][18] = { + + { 0x1898C296, 0x1284E517, 0x1EB33A0F, 0x00DF604B, + 0x2440F277, 0x339B958E, 0x04247F8B, 0x347CB84B, + 0x00006B17, 0x37BF51F5, 0x2ED901A0, 0x3315ECEC, + 0x338CD5DA, 0x0F9E162B, 0x1FAD29F0, 0x27F9B8EE, + 0x10B8BF86, 0x00004FE3 }, + + { 0x07669978, 0x182D23F1, 0x3F21B35A, 0x225A789D, + 0x351AC3C0, 0x08E00C12, 0x34F7E8A5, 0x1EC62340, + 0x00007CF2, 0x227873D1, 0x3812DE74, 0x0E982299, + 0x1F6B798F, 0x3430DBBA, 0x366B1A7D, 0x2D040293, + 0x154436E3, 0x00000777 }, + + { 0x06E7FD6C, 0x2D05986F, 0x3ADA985F, 0x31ADC87B, + 0x0BF165E6, 0x1FBE5475, 0x30A44C8F, 0x3934698C, + 0x00005ECB, 0x227D5032, 0x29E6C49E, 0x04FB83D9, + 0x0AAC0D8E, 0x24A2ECD8, 0x2C1B3869, 0x0FF7E374, + 0x19031266, 0x00008734 }, + + { 0x2B030852, 0x024C0911, 0x05596EF5, 0x07F8B6DE, + 0x262BD003, 0x3779967B, 0x08FBBA02, 0x128D4CB4, + 0x0000E253, 0x184ED8C6, 0x310B08FC, 0x30EE0055, + 0x3F25B0FC, 0x062D764E, 0x3FB97F6A, 0x33CC719D, + 0x15D69318, 0x0000E0F1 }, + + { 0x03D033ED, 0x05552837, 0x35BE5242, 0x2320BF47, + 0x268FDFEF, 0x13215821, 0x140D2D78, 0x02DE9454, + 0x00005159, 0x3DA16DA4, 0x0742ED13, 0x0D80888D, + 0x004BC035, 0x0A79260D, 0x06FCDAFE, 0x2727D8AE, + 0x1F6A2412, 0x0000E0C1 }, + + { 0x3C2291A9, 0x1AC2ABA4, 0x3B215B4C, 0x131D037A, + 0x17DDE302, 0x0C90B2E2, 0x0602C92D, 0x05CA9DA9, + 0x0000B01A, 0x0FC77FE2, 0x35F1214E, 0x07E16BDF, + 0x003DDC07, 0x2703791C, 0x3038B7EE, 0x3DAD56FE, + 0x041D0C8D, 0x0000E85C }, + + { 0x3187B2A3, 0x0018A1C0, 0x00FEF5B3, 0x3E7E2E2A, + 0x01FB607E, 0x2CC199F0, 0x37B4625B, 0x0EDBE82F, + 0x00008E53, 0x01F400B4, 0x15786A1B, 0x3041B21C, + 0x31CD8CF2, 0x35900053, 0x1A7E0E9B, 0x318366D0, + 0x076F780C, 0x000073EB }, + + { 0x1B6FB393, 0x13767707, 0x3CE97DBB, 0x348E2603, + 0x354CADC1, 0x09D0B4EA, 0x1B053404, 0x1DE76FBA, + 0x000062D9, 0x0F09957E, 0x295029A8, 0x3E76A78D, + 0x3B547DAE, 0x27CEE0A2, 0x0575DC45, 0x1D8244FF, + 0x332F647A, 0x0000AD5A }, + + { 0x10949EE0, 0x1E7A292E, 0x06DF8B3D, 0x02B2E30B, + 0x31F8729E, 0x24E35475, 0x30B71878, 0x35EDBFB7, + 0x0000EA68, 0x0DD048FA, 0x21688929, 0x0DE823FE, + 0x1C53FAA9, 0x0EA0C84D, 0x052A592A, 0x1FCE7870, + 0x11325CB2, 0x00002A27 }, + + { 0x04C5723F, 0x30D81A50, 0x048306E4, 0x329B11C7, + 0x223FB545, 0x085347A8, 0x2993E591, 0x1B5ACA8E, + 0x0000CEF6, 0x04AF0773, 0x28D2EEA9, 0x2751EEEC, + 0x037B4A7F, 0x3B4C1059, 0x08F37674, 0x2AE906E1, + 0x18A88A6A, 0x00008786 }, + + { 0x34BC21D1, 0x0CCE474D, 0x15048BF4, 0x1D0BB409, + 0x021CDA16, 0x20DE76C3, 0x34C59063, 0x04EDE20E, + 0x00003ED1, 0x282A3740, 0x0BE3BBF3, 0x29889DAE, + 0x03413697, 0x34C68A09, 0x210EBE93, 0x0C8A224C, + 0x0826B331, 0x00009099 }, + + { 0x0624E3C4, 0x140317BA, 0x2F82C99D, 0x260C0A2C, + 0x25D55179, 0x194DCC83, 0x3D95E462, 0x356F6A05, + 0x0000741D, 0x0D4481D3, 0x2657FC8B, 0x1BA5CA71, + 0x3AE44B0D, 0x07B1548E, 0x0E0D5522, 0x05FDC567, + 0x2D1AA70E, 0x00000770 }, + + { 0x06072C01, 0x23857675, 0x1EAD58A9, 0x0B8A12D9, + 0x1EE2FC79, 0x0177CB61, 0x0495A618, 0x20DEB82B, + 0x0000177C, 0x2FC7BFD8, 0x310EEF8B, 0x1FB4DF39, + 0x3B8530E8, 0x0F4E7226, 0x0246B6D0, 0x2A558A24, + 0x163353AF, 0x000063BB }, + + { 0x24D2920B, 0x1C249DCC, 0x2069C5E5, 0x09AB2F9E, + 0x36DF3CF1, 0x1991FD0C, 0x062B97A7, 0x1E80070E, + 0x000054E7, 0x20D0B375, 0x2E9F20BD, 0x35090081, + 0x1C7A9DDC, 0x22E7C371, 0x087E3016, 0x03175421, + 0x3C6ECA7D, 0x0000F599 }, + + { 0x259B9D5F, 0x0D9A318F, 0x23A0EF16, 0x00EBE4B7, + 0x088265AE, 0x2CDE2666, 0x2BAE7ADF, 0x1371A5C6, + 0x0000F045, 0x0D034F36, 0x1F967378, 0x1B5FA3F4, + 0x0EC8739D, 0x1643E62A, 0x1653947E, 0x22D1F4E6, + 0x0FB8D64B, 0x0000B5B9 } +}; + +/* + * Lookup one of the Gwin[] values, by index. This is constant-time. + */ +static void +lookup_Gwin(p256_jacobian *T, uint32_t idx) +{ + uint32_t xy[18]; + uint32_t k; + size_t u; + + memset(xy, 0, sizeof xy); + for (k = 0; k < 15; k ++) { + uint32_t m; + + m = -EQ(idx, k + 1); + for (u = 0; u < 18; u ++) { + xy[u] |= m & Gwin[k][u]; + } + } + memcpy(T->x, &xy[0], sizeof T->x); + memcpy(T->y, &xy[9], sizeof T->y); + memset(T->z, 0, sizeof T->z); + T->z[0] = 1; +} + +/* + * Multiply the generator by an integer. The integer is assumed non-zero + * and lower than the curve order. + */ +static void +p256_mulgen(p256_jacobian *P, const unsigned char *x, size_t xlen) +{ + /* + * qz is a flag that is initially 1, and remains equal to 1 + * as long as the point is the point at infinity. + * + * We use a 4-bit window to handle multiplier bits by groups + * of 4. The precomputed window is constant static data, with + * points in affine coordinates; we use a constant-time lookup. + */ + p256_jacobian Q; + uint32_t qz; + + memset(&Q, 0, sizeof Q); + qz = 1; + while (xlen -- > 0) { + int k; + unsigned bx; + + bx = *x ++; + for (k = 0; k < 2; k ++) { + uint32_t bits; + uint32_t bnz; + p256_jacobian T, U; + + p256_double(&Q); + p256_double(&Q); + p256_double(&Q); + p256_double(&Q); + bits = (bx >> 4) & 0x0F; + bnz = NEQ(bits, 0); + lookup_Gwin(&T, bits); + U = Q; + p256_add_mixed(&U, &T); + CCOPY(bnz & qz, &Q, &T, sizeof Q); + CCOPY(bnz & ~qz, &Q, &U, sizeof Q); + qz &= ~bnz; + bx <<= 4; + } + } + *P = Q; +} + +static const unsigned char P256_G[] = { + 0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, + 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, + 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8, + 0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F, + 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B, + 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40, + 0x68, 0x37, 0xBF, 0x51, 0xF5 +}; + +static const unsigned char P256_N[] = { + 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, + 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, + 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, + 0x25, 0x51 +}; + +static const unsigned char * +api_generator(int curve, size_t *len) +{ + (void)curve; + *len = sizeof P256_G; + return P256_G; +} + +static const unsigned char * +api_order(int curve, size_t *len) +{ + (void)curve; + *len = sizeof P256_N; + return P256_N; +} + +static size_t +api_xoff(int curve, size_t *len) +{ + (void)curve; + *len = 32; + return 1; +} + +static uint32_t +api_mul(unsigned char *G, size_t Glen, + const unsigned char *x, size_t xlen, int curve) +{ + uint32_t r; + p256_jacobian P; + + (void)curve; + r = p256_decode(&P, G, Glen); + p256_mul(&P, x, xlen); + if (Glen >= 65) { + p256_to_affine(&P); + p256_encode(G, &P); + } + return r; +} + +static size_t +api_mulgen(unsigned char *R, + const unsigned char *x, size_t xlen, int curve) +{ + p256_jacobian P; + + (void)curve; + p256_mulgen(&P, x, xlen); + p256_to_affine(&P); + p256_encode(R, &P); + return 65; + + /* + const unsigned char *G; + size_t Glen; + + G = api_generator(curve, &Glen); + memcpy(R, G, Glen); + api_mul(R, Glen, x, xlen, curve); + return Glen; + */ +} + +static uint32_t +api_muladd(unsigned char *A, const unsigned char *B, size_t len, + const unsigned char *x, size_t xlen, + const unsigned char *y, size_t ylen, int curve) +{ + p256_jacobian P, Q; + uint32_t r, t, z; + int i; + + (void)curve; + r = p256_decode(&P, A, len); + p256_mul(&P, x, xlen); + if (B == NULL) { + p256_mulgen(&Q, y, ylen); + } else { + r &= p256_decode(&Q, B, len); + p256_mul(&Q, y, ylen); + } + + /* + * The final addition may fail in case both points are equal. + */ + t = p256_add(&P, &Q); + reduce_final_f256(P.z); + z = 0; + for (i = 0; i < 9; i ++) { + z |= P.z[i]; + } + z = EQ(z, 0); + p256_double(&Q); + + /* + * If z is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we + * have the following: + * + * z = 0, t = 0 return P (normal addition) + * z = 0, t = 1 return P (normal addition) + * z = 1, t = 0 return Q (a 'double' case) + * z = 1, t = 1 report an error (P+Q = 0) + */ + CCOPY(z & ~t, &P, &Q, sizeof Q); + p256_to_affine(&P); + p256_encode(A, &P); + r &= ~(z & t); + return r; +} + +/* see bearssl_ec.h */ +const br_ec_impl br_ec_p256_m31 = { + (uint32_t)0x00800000, + &api_generator, + &api_order, + &api_xoff, + &api_mul, + &api_mulgen, + &api_muladd +}; diff --git a/test/test_crypto.c b/test/test_crypto.c index a5f6246..53a5f13 100644 --- a/test/test_crypto.c +++ b/test/test_crypto.c @@ -4918,6 +4918,13 @@ test_EC_p256_m15(void) (uint32_t)1 << BR_EC_secp256r1); } +static void +test_EC_p256_m31(void) +{ + test_EC_KAT("EC_p256_m31", &br_ec_p256_m31, + (uint32_t)1 << BR_EC_secp256r1); +} + const struct { const char *scalar; const char *u_in; @@ -5567,6 +5574,7 @@ static const struct { STU(EC_prime_i15), STU(EC_prime_i31), STU(EC_p256_m15), + STU(EC_p256_m31), STU(EC_c25519_i15), STU(EC_c25519_i31), STU(EC_c25519_m15), diff --git a/test/test_speed.c b/test/test_speed.c index 458d765..db65edc 100644 --- a/test/test_speed.c +++ b/test/test_speed.c @@ -691,6 +691,13 @@ test_speed_ec_p256_m15(void) &br_ec_p256_m15, &br_secp256r1); } +static void +test_speed_ec_p256_m31(void) +{ + test_speed_ec_inner("EC p256_m31", + &br_ec_p256_m31, &br_secp256r1); +} + static void test_speed_ec_prime_i15(void) { @@ -835,6 +842,15 @@ test_speed_ecdsa_p256_m15(void) &br_ecdsa_i15_vrfy_asn1); } +static void +test_speed_ecdsa_p256_m31(void) +{ + test_speed_ecdsa_inner("ECDSA m31 P-256", + &br_ec_p256_m31, &br_secp256r1, + &br_ecdsa_i31_sign_asn1, + &br_ecdsa_i31_vrfy_asn1); +} + static void test_speed_ecdsa_i15(void) { @@ -1282,11 +1298,13 @@ static const struct { STU(ec_prime_i15), STU(ec_prime_i31), STU(ec_p256_m15), + STU(ec_p256_m31), STU(ec_c25519_i15), STU(ec_c25519_i31), STU(ec_c25519_m15), STU(ec_c25519_m31), STU(ecdsa_p256_m15), + STU(ecdsa_p256_m31), STU(ecdsa_i15), STU(ecdsa_i31),