Fixed some errors in comments.
[BearSSL] / src / ec / ec_p256_m64.c
1 /*
2 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "inner.h"
26
27 #if BR_INT128 || BR_UMUL128
28
29 #if BR_UMUL128
30 #include <intrin.h>
31 #endif
32
33 static const unsigned char P256_G[] = {
34 0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
35 0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
36 0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
37 0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
38 0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
39 0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
40 0x68, 0x37, 0xBF, 0x51, 0xF5
41 };
42
43 static const unsigned char P256_N[] = {
44 0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
45 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
46 0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
47 0x25, 0x51
48 };
49
50 static const unsigned char *
51 api_generator(int curve, size_t *len)
52 {
53 (void)curve;
54 *len = sizeof P256_G;
55 return P256_G;
56 }
57
58 static const unsigned char *
59 api_order(int curve, size_t *len)
60 {
61 (void)curve;
62 *len = sizeof P256_N;
63 return P256_N;
64 }
65
66 static size_t
67 api_xoff(int curve, size_t *len)
68 {
69 (void)curve;
70 *len = 32;
71 return 1;
72 }
73
74 /*
75 * A field element is encoded as four 64-bit integers, in basis 2^64.
76 * Values may reach up to 2^256-1. Montgomery multiplication is used.
77 */
78
79 /* R = 2^256 mod p */
80 static const uint64_t F256_R[] = {
81 0x0000000000000001, 0xFFFFFFFF00000000,
82 0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE
83 };
84
85 /* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
86 (Montgomery representation of B). */
87 static const uint64_t P256_B_MONTY[] = {
88 0xD89CDF6229C4BDDF, 0xACF005CD78843090,
89 0xE5A220ABF7212ED6, 0xDC30061D04874834
90 };
91
92 /*
93 * Addition in the field.
94 */
95 static inline void
96 f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
97 {
98 #if BR_INT128
99 unsigned __int128 w;
100 uint64_t t;
101
102 w = (unsigned __int128)a[0] + b[0];
103 d[0] = (uint64_t)w;
104 w = (unsigned __int128)a[1] + b[1] + (w >> 64);
105 d[1] = (uint64_t)w;
106 w = (unsigned __int128)a[2] + b[2] + (w >> 64);
107 d[2] = (uint64_t)w;
108 w = (unsigned __int128)a[3] + b[3] + (w >> 64);
109 d[3] = (uint64_t)w;
110 t = (uint64_t)(w >> 64);
111
112 /*
113 * 2^256 = 2^224 - 2^192 - 2^96 + 1 in the field.
114 */
115 w = (unsigned __int128)d[0] + t;
116 d[0] = (uint64_t)w;
117 w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
118 d[1] = (uint64_t)w;
119 /* Here, carry "w >> 64" can only be 0 or -1 */
120 w = (unsigned __int128)d[2] - ((w >> 64) & 1);
121 d[2] = (uint64_t)w;
122 /* Again, carry is 0 or -1 */
123 d[3] += (uint64_t)(w >> 64) + (t << 32) - t;
124
125 #elif BR_UMUL128
126
127 unsigned char cc;
128 uint64_t t;
129
130 cc = _addcarry_u64(0, a[0], b[0], &d[0]);
131 cc = _addcarry_u64(cc, a[1], b[1], &d[1]);
132 cc = _addcarry_u64(cc, a[2], b[2], &d[2]);
133 cc = _addcarry_u64(cc, a[3], b[3], &d[3]);
134
135 /*
136 * If there is a carry, then we want to subtract p, which we
137 * do by adding 2^256 - p.
138 */
139 t = cc;
140 cc = _addcarry_u64(cc, d[0], 0, &d[0]);
141 cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
142 cc = _addcarry_u64(cc, d[2], -t, &d[2]);
143 (void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
144
145 #endif
146 }
147
148 /*
149 * Subtraction in the field.
150 */
151 static inline void
152 f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
153 {
154 #if BR_INT128
155
156 unsigned __int128 w;
157 uint64_t t;
158
159 w = (unsigned __int128)a[0] - b[0];
160 d[0] = (uint64_t)w;
161 w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1);
162 d[1] = (uint64_t)w;
163 w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1);
164 d[2] = (uint64_t)w;
165 w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1);
166 d[3] = (uint64_t)w;
167 t = (uint64_t)(w >> 64) & 1;
168
169 /*
170 * p = 2^256 - 2^224 + 2^192 + 2^96 - 1.
171 */
172 w = (unsigned __int128)d[0] - t;
173 d[0] = (uint64_t)w;
174 w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
175 d[1] = (uint64_t)w;
176 /* Here, carry "w >> 64" can only be 0 or +1 */
177 w = (unsigned __int128)d[2] + (w >> 64);
178 d[2] = (uint64_t)w;
179 /* Again, carry is 0 or +1 */
180 d[3] += (uint64_t)(w >> 64) - (t << 32) + t;
181
182 #elif BR_UMUL128
183
184 unsigned char cc;
185 uint64_t t;
186
187 cc = _subborrow_u64(0, a[0], b[0], &d[0]);
188 cc = _subborrow_u64(cc, a[1], b[1], &d[1]);
189 cc = _subborrow_u64(cc, a[2], b[2], &d[2]);
190 cc = _subborrow_u64(cc, a[3], b[3], &d[3]);
191
192 /*
193 * If there is a carry, then we need to add p.
194 */
195 t = cc;
196 cc = _addcarry_u64(0, d[0], -t, &d[0]);
197 cc = _addcarry_u64(cc, d[1], (-t) >> 32, &d[1]);
198 cc = _addcarry_u64(cc, d[2], 0, &d[2]);
199 (void)_addcarry_u64(cc, d[3], t - (t << 32), &d[3]);
200
201 #endif
202 }
203
204 /*
205 * Montgomery multiplication in the field.
206 */
207 static void
208 f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
209 {
210 #if BR_INT128
211
212 uint64_t x, f, t0, t1, t2, t3, t4;
213 unsigned __int128 z, ff;
214 int i;
215
216 /*
217 * When computing d <- d + a[u]*b, we also add f*p such
218 * that d + a[u]*b + f*p is a multiple of 2^64. Since
219 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
220 */
221
222 /*
223 * Step 1: t <- (a[0]*b + f*p) / 2^64
224 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
225 * ensures that (a[0]*b + f*p) is a multiple of 2^64.
226 *
227 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
228 */
229 x = a[0];
230 z = (unsigned __int128)b[0] * x;
231 f = (uint64_t)z;
232 z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32);
233 t0 = (uint64_t)z;
234 z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32);
235 t1 = (uint64_t)z;
236 z = (unsigned __int128)b[3] * x + (z >> 64) + f;
237 t2 = (uint64_t)z;
238 t3 = (uint64_t)(z >> 64);
239 ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32);
240 z = (unsigned __int128)t2 + (uint64_t)ff;
241 t2 = (uint64_t)z;
242 z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
243 t3 = (uint64_t)z;
244 t4 = (uint64_t)(z >> 64);
245
246 /*
247 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
248 */
249 for (i = 1; i < 4; i ++) {
250 x = a[i];
251
252 /* t <- (t + x*b - f) / 2^64 */
253 z = (unsigned __int128)b[0] * x + t0;
254 f = (uint64_t)z;
255 z = (unsigned __int128)b[1] * x + t1 + (z >> 64);
256 t0 = (uint64_t)z;
257 z = (unsigned __int128)b[2] * x + t2 + (z >> 64);
258 t1 = (uint64_t)z;
259 z = (unsigned __int128)b[3] * x + t3 + (z >> 64);
260 t2 = (uint64_t)z;
261 z = t4 + (z >> 64);
262 t3 = (uint64_t)z;
263 t4 = (uint64_t)(z >> 64);
264
265 /* t <- t + f*2^32, carry in the upper half of z */
266 z = (unsigned __int128)t0 + (uint64_t)(f << 32);
267 t0 = (uint64_t)z;
268 z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32);
269 t1 = (uint64_t)z;
270
271 /* t <- t + f*2^192 - f*2^160 + f*2^128 */
272 ff = ((unsigned __int128)f << 64)
273 - ((unsigned __int128)f << 32) + f;
274 z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff;
275 t2 = (uint64_t)z;
276 z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
277 t3 = (uint64_t)z;
278 t4 += (uint64_t)(z >> 64);
279 }
280
281 /*
282 * At that point, we have computed t = (a*b + F*p) / 2^256, where
283 * F is a 256-bit integer whose limbs are the "f" coefficients
284 * in the steps above. We have:
285 * a <= 2^256-1
286 * b <= 2^256-1
287 * F <= 2^256-1
288 * Hence:
289 * a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
290 * a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
291 * Therefore:
292 * t < 2^256 + p - 2
293 * Since p < 2^256, it follows that:
294 * t4 can be only 0 or 1
295 * t - p < 2^256
296 * We can therefore subtract p from t, conditionally on t4, to
297 * get a nonnegative result that fits on 256 bits.
298 */
299 z = (unsigned __int128)t0 + t4;
300 t0 = (uint64_t)z;
301 z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64);
302 t1 = (uint64_t)z;
303 z = (unsigned __int128)t2 - (z >> 127);
304 t2 = (uint64_t)z;
305 t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32);
306
307 d[0] = t0;
308 d[1] = t1;
309 d[2] = t2;
310 d[3] = t3;
311
312 #elif BR_UMUL128
313
314 uint64_t x, f, t0, t1, t2, t3, t4;
315 uint64_t zl, zh, ffl, ffh;
316 unsigned char k, m;
317 int i;
318
319 /*
320 * When computing d <- d + a[u]*b, we also add f*p such
321 * that d + a[u]*b + f*p is a multiple of 2^64. Since
322 * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
323 */
324
325 /*
326 * Step 1: t <- (a[0]*b + f*p) / 2^64
327 * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
328 * ensures that (a[0]*b + f*p) is a multiple of 2^64.
329 *
330 * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
331 */
332 x = a[0];
333
334 zl = _umul128(b[0], x, &zh);
335 f = zl;
336 t0 = zh;
337
338 zl = _umul128(b[1], x, &zh);
339 k = _addcarry_u64(0, zl, t0, &zl);
340 (void)_addcarry_u64(k, zh, 0, &zh);
341 k = _addcarry_u64(0, zl, f << 32, &zl);
342 (void)_addcarry_u64(k, zh, 0, &zh);
343 t0 = zl;
344 t1 = zh;
345
346 zl = _umul128(b[2], x, &zh);
347 k = _addcarry_u64(0, zl, t1, &zl);
348 (void)_addcarry_u64(k, zh, 0, &zh);
349 k = _addcarry_u64(0, zl, f >> 32, &zl);
350 (void)_addcarry_u64(k, zh, 0, &zh);
351 t1 = zl;
352 t2 = zh;
353
354 zl = _umul128(b[3], x, &zh);
355 k = _addcarry_u64(0, zl, t2, &zl);
356 (void)_addcarry_u64(k, zh, 0, &zh);
357 k = _addcarry_u64(0, zl, f, &zl);
358 (void)_addcarry_u64(k, zh, 0, &zh);
359 t2 = zl;
360 t3 = zh;
361
362 t4 = _addcarry_u64(0, t3, f, &t3);
363 k = _subborrow_u64(0, t2, f << 32, &t2);
364 k = _subborrow_u64(k, t3, f >> 32, &t3);
365 (void)_subborrow_u64(k, t4, 0, &t4);
366
367 /*
368 * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
369 */
370 for (i = 1; i < 4; i ++) {
371 x = a[i];
372 /* f = t0 + x * b[0]; -- computed below */
373
374 /* t <- (t + x*b - f) / 2^64 */
375 zl = _umul128(b[0], x, &zh);
376 k = _addcarry_u64(0, zl, t0, &f);
377 (void)_addcarry_u64(k, zh, 0, &t0);
378
379 zl = _umul128(b[1], x, &zh);
380 k = _addcarry_u64(0, zl, t0, &zl);
381 (void)_addcarry_u64(k, zh, 0, &zh);
382 k = _addcarry_u64(0, zl, t1, &t0);
383 (void)_addcarry_u64(k, zh, 0, &t1);
384
385 zl = _umul128(b[2], x, &zh);
386 k = _addcarry_u64(0, zl, t1, &zl);
387 (void)_addcarry_u64(k, zh, 0, &zh);
388 k = _addcarry_u64(0, zl, t2, &t1);
389 (void)_addcarry_u64(k, zh, 0, &t2);
390
391 zl = _umul128(b[3], x, &zh);
392 k = _addcarry_u64(0, zl, t2, &zl);
393 (void)_addcarry_u64(k, zh, 0, &zh);
394 k = _addcarry_u64(0, zl, t3, &t2);
395 (void)_addcarry_u64(k, zh, 0, &t3);
396
397 t4 = _addcarry_u64(0, t3, t4, &t3);
398
399 /* t <- t + f*2^32, carry in k */
400 k = _addcarry_u64(0, t0, f << 32, &t0);
401 k = _addcarry_u64(k, t1, f >> 32, &t1);
402
403 /* t <- t + f*2^192 - f*2^160 + f*2^128 */
404 m = _subborrow_u64(0, f, f << 32, &ffl);
405 (void)_subborrow_u64(m, f, f >> 32, &ffh);
406 k = _addcarry_u64(k, t2, ffl, &t2);
407 k = _addcarry_u64(k, t3, ffh, &t3);
408 (void)_addcarry_u64(k, t4, 0, &t4);
409 }
410
411 /*
412 * At that point, we have computed t = (a*b + F*p) / 2^256, where
413 * F is a 256-bit integer whose limbs are the "f" coefficients
414 * in the steps above. We have:
415 * a <= 2^256-1
416 * b <= 2^256-1
417 * F <= 2^256-1
418 * Hence:
419 * a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
420 * a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
421 * Therefore:
422 * t < 2^256 + p - 2
423 * Since p < 2^256, it follows that:
424 * t4 can be only 0 or 1
425 * t - p < 2^256
426 * We can therefore subtract p from t, conditionally on t4, to
427 * get a nonnegative result that fits on 256 bits.
428 */
429 k = _addcarry_u64(0, t0, t4, &t0);
430 k = _addcarry_u64(k, t1, -(t4 << 32), &t1);
431 k = _addcarry_u64(k, t2, -t4, &t2);
432 (void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3);
433
434 d[0] = t0;
435 d[1] = t1;
436 d[2] = t2;
437 d[3] = t3;
438
439 #endif
440 }
441
442 /*
443 * Montgomery squaring in the field; currently a basic wrapper around
444 * multiplication (inline, should be optimized away).
445 * TODO: see if some extra speed can be gained here.
446 */
447 static inline void
448 f256_montysquare(uint64_t *d, const uint64_t *a)
449 {
450 f256_montymul(d, a, a);
451 }
452
453 /*
454 * Convert to Montgomery representation.
455 */
456 static void
457 f256_tomonty(uint64_t *d, const uint64_t *a)
458 {
459 /*
460 * R2 = 2^512 mod p.
461 * If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery
462 * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
463 * conversion to Montgomery representation.
464 */
465 static const uint64_t R2[] = {
466 0x0000000000000003,
467 0xFFFFFFFBFFFFFFFF,
468 0xFFFFFFFFFFFFFFFE,
469 0x00000004FFFFFFFD
470 };
471
472 f256_montymul(d, a, R2);
473 }
474
475 /*
476 * Convert from Montgomery representation.
477 */
478 static void
479 f256_frommonty(uint64_t *d, const uint64_t *a)
480 {
481 /*
482 * Montgomery multiplication by 1 is division by 2^256 modulo p.
483 */
484 static const uint64_t one[] = { 1, 0, 0, 0 };
485
486 f256_montymul(d, a, one);
487 }
488
489 /*
490 * Inversion in the field. If the source value is 0 modulo p, then this
491 * returns 0 or p. This function uses Montgomery representation.
492 */
493 static void
494 f256_invert(uint64_t *d, const uint64_t *a)
495 {
496 /*
497 * We compute a^(p-2) mod p. The exponent pattern (from high to
498 * low) is:
499 * - 32 bits of value 1
500 * - 31 bits of value 0
501 * - 1 bit of value 1
502 * - 96 bits of value 0
503 * - 94 bits of value 1
504 * - 1 bit of value 0
505 * - 1 bit of value 1
506 * To speed up the square-and-multiply algorithm, we precompute
507 * a^(2^31-1).
508 */
509
510 uint64_t r[4], t[4];
511 int i;
512
513 memcpy(t, a, sizeof t);
514 for (i = 0; i < 30; i ++) {
515 f256_montysquare(t, t);
516 f256_montymul(t, t, a);
517 }
518
519 memcpy(r, t, sizeof t);
520 for (i = 224; i >= 0; i --) {
521 f256_montysquare(r, r);
522 switch (i) {
523 case 0:
524 case 2:
525 case 192:
526 case 224:
527 f256_montymul(r, r, a);
528 break;
529 case 3:
530 case 34:
531 case 65:
532 f256_montymul(r, r, t);
533 break;
534 }
535 }
536 memcpy(d, r, sizeof r);
537 }
538
539 /*
540 * Finalize reduction.
541 * Input value fits on 256 bits. This function subtracts p if and only
542 * if the input is greater than or equal to p.
543 */
544 static inline void
545 f256_final_reduce(uint64_t *a)
546 {
547 #if BR_INT128
548
549 uint64_t t0, t1, t2, t3, cc;
550 unsigned __int128 z;
551
552 /*
553 * We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry,
554 * then a < p; otherwise, the addition result we computed is
555 * the value we must return.
556 */
557 z = (unsigned __int128)a[0] + 1;
558 t0 = (uint64_t)z;
559 z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32);
560 t1 = (uint64_t)z;
561 z = (unsigned __int128)a[2] - (z >> 127);
562 t2 = (uint64_t)z;
563 z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF;
564 t3 = (uint64_t)z;
565 cc = -(uint64_t)(z >> 64);
566
567 a[0] ^= cc & (a[0] ^ t0);
568 a[1] ^= cc & (a[1] ^ t1);
569 a[2] ^= cc & (a[2] ^ t2);
570 a[3] ^= cc & (a[3] ^ t3);
571
572 #elif BR_UMUL128
573
574 uint64_t t0, t1, t2, t3, m;
575 unsigned char k;
576
577 k = _addcarry_u64(0, a[0], (uint64_t)1, &t0);
578 k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1);
579 k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2);
580 k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3);
581 m = -(uint64_t)k;
582
583 a[0] ^= m & (a[0] ^ t0);
584 a[1] ^= m & (a[1] ^ t1);
585 a[2] ^= m & (a[2] ^ t2);
586 a[3] ^= m & (a[3] ^ t3);
587
588 #endif
589 }
590
591 /*
592 * Points in affine and Jacobian coordinates.
593 *
594 * - In affine coordinates, the point-at-infinity cannot be encoded.
595 * - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
596 * if Z = 0 then this is the point-at-infinity.
597 */
598 typedef struct {
599 uint64_t x[4];
600 uint64_t y[4];
601 } p256_affine;
602
603 typedef struct {
604 uint64_t x[4];
605 uint64_t y[4];
606 uint64_t z[4];
607 } p256_jacobian;
608
609 /*
610 * Decode a point. The returned point is in Jacobian coordinates, but
611 * with z = 1. If the encoding is invalid, or encodes a point which is
612 * not on the curve, or encodes the point at infinity, then this function
613 * returns 0. Otherwise, 1 is returned.
614 *
615 * The buffer is assumed to have length exactly 65 bytes.
616 */
617 static uint32_t
618 point_decode(p256_jacobian *P, const unsigned char *buf)
619 {
620 uint64_t x[4], y[4], t[4], x3[4], tt;
621 uint32_t r;
622
623 /*
624 * Header byte shall be 0x04.
625 */
626 r = EQ(buf[0], 0x04);
627
628 /*
629 * Decode X and Y coordinates, and convert them into
630 * Montgomery representation.
631 */
632 x[3] = br_dec64be(buf + 1);
633 x[2] = br_dec64be(buf + 9);
634 x[1] = br_dec64be(buf + 17);
635 x[0] = br_dec64be(buf + 25);
636 y[3] = br_dec64be(buf + 33);
637 y[2] = br_dec64be(buf + 41);
638 y[1] = br_dec64be(buf + 49);
639 y[0] = br_dec64be(buf + 57);
640 f256_tomonty(x, x);
641 f256_tomonty(y, y);
642
643 /*
644 * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
645 * Note that the Montgomery representation of 0 is 0. We must
646 * take care to apply the final reduction to make sure we have
647 * 0 and not p.
648 */
649 f256_montysquare(t, y);
650 f256_montysquare(x3, x);
651 f256_montymul(x3, x3, x);
652 f256_sub(t, t, x3);
653 f256_add(t, t, x);
654 f256_add(t, t, x);
655 f256_add(t, t, x);
656 f256_sub(t, t, P256_B_MONTY);
657 f256_final_reduce(t);
658 tt = t[0] | t[1] | t[2] | t[3];
659 r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
660
661 /*
662 * Return the point in Jacobian coordinates (and Montgomery
663 * representation).
664 */
665 memcpy(P->x, x, sizeof x);
666 memcpy(P->y, y, sizeof y);
667 memcpy(P->z, F256_R, sizeof F256_R);
668 return r;
669 }
670
671 /*
672 * Final conversion for a point:
673 * - The point is converted back to affine coordinates.
674 * - Final reduction is performed.
675 * - The point is encoded into the provided buffer.
676 *
677 * If the point is the point-at-infinity, all operations are performed,
678 * but the buffer contents are indeterminate, and 0 is returned. Otherwise,
679 * the encoded point is written in the buffer, and 1 is returned.
680 */
681 static uint32_t
682 point_encode(unsigned char *buf, const p256_jacobian *P)
683 {
684 uint64_t t1[4], t2[4], z;
685
686 /* Set t1 = 1/z^2 and t2 = 1/z^3. */
687 f256_invert(t2, P->z);
688 f256_montysquare(t1, t2);
689 f256_montymul(t2, t2, t1);
690
691 /* Compute affine coordinates x (in t1) and y (in t2). */
692 f256_montymul(t1, P->x, t1);
693 f256_montymul(t2, P->y, t2);
694
695 /* Convert back from Montgomery representation, and finalize
696 reductions. */
697 f256_frommonty(t1, t1);
698 f256_frommonty(t2, t2);
699 f256_final_reduce(t1);
700 f256_final_reduce(t2);
701
702 /* Encode. */
703 buf[0] = 0x04;
704 br_enc64be(buf + 1, t1[3]);
705 br_enc64be(buf + 9, t1[2]);
706 br_enc64be(buf + 17, t1[1]);
707 br_enc64be(buf + 25, t1[0]);
708 br_enc64be(buf + 33, t2[3]);
709 br_enc64be(buf + 41, t2[2]);
710 br_enc64be(buf + 49, t2[1]);
711 br_enc64be(buf + 57, t2[0]);
712
713 /* Return success if and only if P->z != 0. */
714 z = P->z[0] | P->z[1] | P->z[2] | P->z[3];
715 return NEQ((uint32_t)(z | z >> 32), 0);
716 }
717
718 /*
719 * Point doubling in Jacobian coordinates: point P is doubled.
720 * Note: if the source point is the point-at-infinity, then the result is
721 * still the point-at-infinity, which is correct. Moreover, if the three
722 * coordinates were zero, then they still are zero in the returned value.
723 *
724 * (Note: this is true even without the final reduction: if the three
725 * coordinates are encoded as four words of value zero each, then the
726 * result will also have all-zero coordinate encodings, not the alternate
727 * encoding as the integer p.)
728 */
729 static void
730 p256_double(p256_jacobian *P)
731 {
732 /*
733 * Doubling formulas are:
734 *
735 * s = 4*x*y^2
736 * m = 3*(x + z^2)*(x - z^2)
737 * x' = m^2 - 2*s
738 * y' = m*(s - x') - 8*y^4
739 * z' = 2*y*z
740 *
741 * These formulas work for all points, including points of order 2
742 * and points at infinity:
743 * - If y = 0 then z' = 0. But there is no such point in P-256
744 * anyway.
745 * - If z = 0 then z' = 0.
746 */
747 uint64_t t1[4], t2[4], t3[4], t4[4];
748
749 /*
750 * Compute z^2 in t1.
751 */
752 f256_montysquare(t1, P->z);
753
754 /*
755 * Compute x-z^2 in t2 and x+z^2 in t1.
756 */
757 f256_add(t2, P->x, t1);
758 f256_sub(t1, P->x, t1);
759
760 /*
761 * Compute 3*(x+z^2)*(x-z^2) in t1.
762 */
763 f256_montymul(t3, t1, t2);
764 f256_add(t1, t3, t3);
765 f256_add(t1, t3, t1);
766
767 /*
768 * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
769 */
770 f256_montysquare(t3, P->y);
771 f256_add(t3, t3, t3);
772 f256_montymul(t2, P->x, t3);
773 f256_add(t2, t2, t2);
774
775 /*
776 * Compute x' = m^2 - 2*s.
777 */
778 f256_montysquare(P->x, t1);
779 f256_sub(P->x, P->x, t2);
780 f256_sub(P->x, P->x, t2);
781
782 /*
783 * Compute z' = 2*y*z.
784 */
785 f256_montymul(t4, P->y, P->z);
786 f256_add(P->z, t4, t4);
787
788 /*
789 * Compute y' = m*(s - x') - 8*y^4. Note that we already have
790 * 2*y^2 in t3.
791 */
792 f256_sub(t2, t2, P->x);
793 f256_montymul(P->y, t1, t2);
794 f256_montysquare(t4, t3);
795 f256_add(t4, t4, t4);
796 f256_sub(P->y, P->y, t4);
797 }
798
799 /*
800 * Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
801 * This function computes the wrong result in the following cases:
802 *
803 * - If P1 == 0 but P2 != 0
804 * - If P1 != 0 but P2 == 0
805 * - If P1 == P2
806 *
807 * In all three cases, P1 is set to the point at infinity.
808 *
809 * Returned value is 0 if one of the following occurs:
810 *
811 * - P1 and P2 have the same Y coordinate.
812 * - P1 == 0 and P2 == 0.
813 * - The Y coordinate of one of the points is 0 and the other point is
814 * the point at infinity.
815 *
816 * The third case cannot actually happen with valid points, since a point
817 * with Y == 0 is a point of order 2, and there is no point of order 2 on
818 * curve P-256.
819 *
820 * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
821 * can apply the following:
822 *
823 * - If the result is not the point at infinity, then it is correct.
824 * - Otherwise, if the returned value is 1, then this is a case of
825 * P1+P2 == 0, so the result is indeed the point at infinity.
826 * - Otherwise, P1 == P2, so a "double" operation should have been
827 * performed.
828 *
829 * Note that you can get a returned value of 0 with a correct result,
830 * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
831 */
832 static uint32_t
833 p256_add(p256_jacobian *P1, const p256_jacobian *P2)
834 {
835 /*
836 * Addtions formulas are:
837 *
838 * u1 = x1 * z2^2
839 * u2 = x2 * z1^2
840 * s1 = y1 * z2^3
841 * s2 = y2 * z1^3
842 * h = u2 - u1
843 * r = s2 - s1
844 * x3 = r^2 - h^3 - 2 * u1 * h^2
845 * y3 = r * (u1 * h^2 - x3) - s1 * h^3
846 * z3 = h * z1 * z2
847 */
848 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
849 uint32_t ret;
850
851 /*
852 * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
853 */
854 f256_montysquare(t3, P2->z);
855 f256_montymul(t1, P1->x, t3);
856 f256_montymul(t4, P2->z, t3);
857 f256_montymul(t3, P1->y, t4);
858
859 /*
860 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
861 */
862 f256_montysquare(t4, P1->z);
863 f256_montymul(t2, P2->x, t4);
864 f256_montymul(t5, P1->z, t4);
865 f256_montymul(t4, P2->y, t5);
866
867 /*
868 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
869 * We need to test whether r is zero, so we will do some extra
870 * reduce.
871 */
872 f256_sub(t2, t2, t1);
873 f256_sub(t4, t4, t3);
874 f256_final_reduce(t4);
875 tt = t4[0] | t4[1] | t4[2] | t4[3];
876 ret = (uint32_t)(tt | (tt >> 32));
877 ret = (ret | -ret) >> 31;
878
879 /*
880 * Compute u1*h^2 (in t6) and h^3 (in t5);
881 */
882 f256_montysquare(t7, t2);
883 f256_montymul(t6, t1, t7);
884 f256_montymul(t5, t7, t2);
885
886 /*
887 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
888 */
889 f256_montysquare(P1->x, t4);
890 f256_sub(P1->x, P1->x, t5);
891 f256_sub(P1->x, P1->x, t6);
892 f256_sub(P1->x, P1->x, t6);
893
894 /*
895 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
896 */
897 f256_sub(t6, t6, P1->x);
898 f256_montymul(P1->y, t4, t6);
899 f256_montymul(t1, t5, t3);
900 f256_sub(P1->y, P1->y, t1);
901
902 /*
903 * Compute z3 = h*z1*z2.
904 */
905 f256_montymul(t1, P1->z, P2->z);
906 f256_montymul(P1->z, t1, t2);
907
908 return ret;
909 }
910
911 /*
912 * Point addition (mixed coordinates): P1 is replaced with P1+P2.
913 * This is a specialised function for the case when P2 is a non-zero point
914 * in affine coordinates.
915 *
916 * This function computes the wrong result in the following cases:
917 *
918 * - If P1 == 0
919 * - If P1 == P2
920 *
921 * In both cases, P1 is set to the point at infinity.
922 *
923 * Returned value is 0 if one of the following occurs:
924 *
925 * - P1 and P2 have the same Y (affine) coordinate.
926 * - The Y coordinate of P2 is 0 and P1 is the point at infinity.
927 *
928 * The second case cannot actually happen with valid points, since a point
929 * with Y == 0 is a point of order 2, and there is no point of order 2 on
930 * curve P-256.
931 *
932 * Therefore, assuming that P1 != 0 on input, then the caller
933 * can apply the following:
934 *
935 * - If the result is not the point at infinity, then it is correct.
936 * - Otherwise, if the returned value is 1, then this is a case of
937 * P1+P2 == 0, so the result is indeed the point at infinity.
938 * - Otherwise, P1 == P2, so a "double" operation should have been
939 * performed.
940 *
941 * Again, a value of 0 may be returned in some cases where the addition
942 * result is correct.
943 */
944 static uint32_t
945 p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
946 {
947 /*
948 * Addtions formulas are:
949 *
950 * u1 = x1
951 * u2 = x2 * z1^2
952 * s1 = y1
953 * s2 = y2 * z1^3
954 * h = u2 - u1
955 * r = s2 - s1
956 * x3 = r^2 - h^3 - 2 * u1 * h^2
957 * y3 = r * (u1 * h^2 - x3) - s1 * h^3
958 * z3 = h * z1
959 */
960 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
961 uint32_t ret;
962
963 /*
964 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
965 */
966 memcpy(t1, P1->x, sizeof t1);
967 memcpy(t3, P1->y, sizeof t3);
968
969 /*
970 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
971 */
972 f256_montysquare(t4, P1->z);
973 f256_montymul(t2, P2->x, t4);
974 f256_montymul(t5, P1->z, t4);
975 f256_montymul(t4, P2->y, t5);
976
977 /*
978 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
979 * We need to test whether r is zero, so we will do some extra
980 * reduce.
981 */
982 f256_sub(t2, t2, t1);
983 f256_sub(t4, t4, t3);
984 f256_final_reduce(t4);
985 tt = t4[0] | t4[1] | t4[2] | t4[3];
986 ret = (uint32_t)(tt | (tt >> 32));
987 ret = (ret | -ret) >> 31;
988
989 /*
990 * Compute u1*h^2 (in t6) and h^3 (in t5);
991 */
992 f256_montysquare(t7, t2);
993 f256_montymul(t6, t1, t7);
994 f256_montymul(t5, t7, t2);
995
996 /*
997 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
998 */
999 f256_montysquare(P1->x, t4);
1000 f256_sub(P1->x, P1->x, t5);
1001 f256_sub(P1->x, P1->x, t6);
1002 f256_sub(P1->x, P1->x, t6);
1003
1004 /*
1005 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1006 */
1007 f256_sub(t6, t6, P1->x);
1008 f256_montymul(P1->y, t4, t6);
1009 f256_montymul(t1, t5, t3);
1010 f256_sub(P1->y, P1->y, t1);
1011
1012 /*
1013 * Compute z3 = h*z1*z2.
1014 */
1015 f256_montymul(P1->z, P1->z, t2);
1016
1017 return ret;
1018 }
1019
1020 #if 0
1021 /* unused */
1022 /*
1023 * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
1024 * This is a specialised function for the case when P2 is a non-zero point
1025 * in affine coordinates.
1026 *
1027 * This function returns the correct result in all cases.
1028 */
1029 static uint32_t
1030 p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
1031 {
1032 /*
1033 * Addtions formulas, in the general case, are:
1034 *
1035 * u1 = x1
1036 * u2 = x2 * z1^2
1037 * s1 = y1
1038 * s2 = y2 * z1^3
1039 * h = u2 - u1
1040 * r = s2 - s1
1041 * x3 = r^2 - h^3 - 2 * u1 * h^2
1042 * y3 = r * (u1 * h^2 - x3) - s1 * h^3
1043 * z3 = h * z1
1044 *
1045 * These formulas mishandle the two following cases:
1046 *
1047 * - If P1 is the point-at-infinity (z1 = 0), then z3 is
1048 * incorrectly set to 0.
1049 *
1050 * - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
1051 * are all set to 0.
1052 *
1053 * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
1054 * we correctly get z3 = 0 (the point-at-infinity).
1055 *
1056 * To fix the case P1 = 0, we perform at the end a copy of P2
1057 * over P1, conditional to z1 = 0.
1058 *
1059 * For P1 = P2: in that case, both h and r are set to 0, and
1060 * we get x3, y3 and z3 equal to 0. We can test for that
1061 * occurrence to make a mask which will be all-one if P1 = P2,
1062 * or all-zero otherwise; then we can compute the double of P2
1063 * and add it, combined with the mask, to (x3,y3,z3).
1064 *
1065 * Using the doubling formulas in p256_double() on (x2,y2),
1066 * simplifying since P2 is affine (i.e. z2 = 1, implicitly),
1067 * we get:
1068 * s = 4*x2*y2^2
1069 * m = 3*(x2 + 1)*(x2 - 1)
1070 * x' = m^2 - 2*s
1071 * y' = m*(s - x') - 8*y2^4
1072 * z' = 2*y2
1073 * which requires only 6 multiplications. Added to the 11
1074 * multiplications of the normal mixed addition in Jacobian
1075 * coordinates, we get a cost of 17 multiplications in total.
1076 */
1077 uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz;
1078 int i;
1079
1080 /*
1081 * Set zz to -1 if P1 is the point at infinity, 0 otherwise.
1082 */
1083 zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3];
1084 zz = ((zz | -zz) >> 63) - (uint64_t)1;
1085
1086 /*
1087 * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
1088 */
1089 memcpy(t1, P1->x, sizeof t1);
1090 memcpy(t3, P1->y, sizeof t3);
1091
1092 /*
1093 * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
1094 */
1095 f256_montysquare(t4, P1->z);
1096 f256_montymul(t2, P2->x, t4);
1097 f256_montymul(t5, P1->z, t4);
1098 f256_montymul(t4, P2->y, t5);
1099
1100 /*
1101 * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
1102 * reduce.
1103 */
1104 f256_sub(t2, t2, t1);
1105 f256_sub(t4, t4, t3);
1106
1107 /*
1108 * If both h = 0 and r = 0, then P1 = P2, and we want to set
1109 * the mask tt to -1; otherwise, the mask will be 0.
1110 */
1111 f256_final_reduce(t2);
1112 f256_final_reduce(t4);
1113 tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3];
1114 tt = ((tt | -tt) >> 63) - (uint64_t)1;
1115
1116 /*
1117 * Compute u1*h^2 (in t6) and h^3 (in t5);
1118 */
1119 f256_montysquare(t7, t2);
1120 f256_montymul(t6, t1, t7);
1121 f256_montymul(t5, t7, t2);
1122
1123 /*
1124 * Compute x3 = r^2 - h^3 - 2*u1*h^2.
1125 */
1126 f256_montysquare(P1->x, t4);
1127 f256_sub(P1->x, P1->x, t5);
1128 f256_sub(P1->x, P1->x, t6);
1129 f256_sub(P1->x, P1->x, t6);
1130
1131 /*
1132 * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
1133 */
1134 f256_sub(t6, t6, P1->x);
1135 f256_montymul(P1->y, t4, t6);
1136 f256_montymul(t1, t5, t3);
1137 f256_sub(P1->y, P1->y, t1);
1138
1139 /*
1140 * Compute z3 = h*z1.
1141 */
1142 f256_montymul(P1->z, P1->z, t2);
1143
1144 /*
1145 * The "double" result, in case P1 = P2.
1146 */
1147
1148 /*
1149 * Compute z' = 2*y2 (in t1).
1150 */
1151 f256_add(t1, P2->y, P2->y);
1152
1153 /*
1154 * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
1155 */
1156 f256_montysquare(t2, P2->y);
1157 f256_add(t2, t2, t2);
1158 f256_add(t3, t2, t2);
1159 f256_montymul(t3, P2->x, t3);
1160
1161 /*
1162 * Compute m = 3*(x2^2 - 1) (in t4).
1163 */
1164 f256_montysquare(t4, P2->x);
1165 f256_sub(t4, t4, F256_R);
1166 f256_add(t5, t4, t4);
1167 f256_add(t4, t4, t5);
1168
1169 /*
1170 * Compute x' = m^2 - 2*s (in t5).
1171 */
1172 f256_montysquare(t5, t4);
1173 f256_sub(t5, t3);
1174 f256_sub(t5, t3);
1175
1176 /*
1177 * Compute y' = m*(s - x') - 8*y2^4 (in t6).
1178 */
1179 f256_sub(t6, t3, t5);
1180 f256_montymul(t6, t6, t4);
1181 f256_montysquare(t7, t2);
1182 f256_sub(t6, t6, t7);
1183 f256_sub(t6, t6, t7);
1184
1185 /*
1186 * We now have the alternate (doubling) coordinates in (t5,t6,t1).
1187 * We combine them with (x3,y3,z3).
1188 */
1189 for (i = 0; i < 4; i ++) {
1190 P1->x[i] |= tt & t5[i];
1191 P1->y[i] |= tt & t6[i];
1192 P1->z[i] |= tt & t1[i];
1193 }
1194
1195 /*
1196 * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
1197 * then we want to replace the result with a copy of P2. The
1198 * test on z1 was done at the start, in the zz mask.
1199 */
1200 for (i = 0; i < 4; i ++) {
1201 P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
1202 P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
1203 P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
1204 }
1205 }
1206 #endif
1207
1208 /*
1209 * Inner function for computing a point multiplication. A window is
1210 * provided, with points 1*P to 15*P in affine coordinates.
1211 *
1212 * Assumptions:
1213 * - All provided points are valid points on the curve.
1214 * - Multiplier is non-zero, and smaller than the curve order.
1215 * - Everything is in Montgomery representation.
1216 */
1217 static void
1218 point_mul_inner(p256_jacobian *R, const p256_affine *W,
1219 const unsigned char *k, size_t klen)
1220 {
1221 p256_jacobian Q;
1222 uint32_t qz;
1223
1224 memset(&Q, 0, sizeof Q);
1225 qz = 1;
1226 while (klen -- > 0) {
1227 int i;
1228 unsigned bk;
1229
1230 bk = *k ++;
1231 for (i = 0; i < 2; i ++) {
1232 uint32_t bits;
1233 uint32_t bnz;
1234 p256_affine T;
1235 p256_jacobian U;
1236 uint32_t n;
1237 int j;
1238 uint64_t m;
1239
1240 p256_double(&Q);
1241 p256_double(&Q);
1242 p256_double(&Q);
1243 p256_double(&Q);
1244 bits = (bk >> 4) & 0x0F;
1245 bnz = NEQ(bits, 0);
1246
1247 /*
1248 * Lookup point in window. If the bits are 0,
1249 * we get something invalid, which is not a
1250 * problem because we will use it only if the
1251 * bits are non-zero.
1252 */
1253 memset(&T, 0, sizeof T);
1254 for (n = 0; n < 15; n ++) {
1255 m = -(uint64_t)EQ(bits, n + 1);
1256 T.x[0] |= m & W[n].x[0];
1257 T.x[1] |= m & W[n].x[1];
1258 T.x[2] |= m & W[n].x[2];
1259 T.x[3] |= m & W[n].x[3];
1260 T.y[0] |= m & W[n].y[0];
1261 T.y[1] |= m & W[n].y[1];
1262 T.y[2] |= m & W[n].y[2];
1263 T.y[3] |= m & W[n].y[3];
1264 }
1265
1266 U = Q;
1267 p256_add_mixed(&U, &T);
1268
1269 /*
1270 * If qz is still 1, then Q was all-zeros, and this
1271 * is conserved through p256_double().
1272 */
1273 m = -(uint64_t)(bnz & qz);
1274 for (j = 0; j < 4; j ++) {
1275 Q.x[j] |= m & T.x[j];
1276 Q.y[j] |= m & T.y[j];
1277 Q.z[j] |= m & F256_R[j];
1278 }
1279 CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
1280 qz &= ~bnz;
1281 bk <<= 4;
1282 }
1283 }
1284 *R = Q;
1285 }
1286
1287 /*
1288 * Convert a window from Jacobian to affine coordinates. A single
1289 * field inversion is used. This function works for windows up to
1290 * 32 elements.
1291 *
1292 * The destination array (aff[]) and the source array (jac[]) may
1293 * overlap, provided that the start of aff[] is not after the start of
1294 * jac[]. Even if the arrays do _not_ overlap, the source array is
1295 * modified.
1296 */
1297 static void
1298 window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
1299 {
1300 /*
1301 * Convert the window points to affine coordinates. We use the
1302 * following trick to mutualize the inversion computation: if
1303 * we have z1, z2, z3, and z4, and want to inverse all of them,
1304 * we compute u = 1/(z1*z2*z3*z4), and then we have:
1305 * 1/z1 = u*z2*z3*z4
1306 * 1/z2 = u*z1*z3*z4
1307 * 1/z3 = u*z1*z2*z4
1308 * 1/z4 = u*z1*z2*z3
1309 *
1310 * The partial products are computed recursively:
1311 *
1312 * - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
1313 * - on input (z_1,z_2,... z_n):
1314 * recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
1315 * recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
1316 * multiply elements of r1 by m2 -> s1
1317 * multiply elements of r2 by m1 -> s2
1318 * return r1||r2 and m1*m2
1319 *
1320 * In the example below, we suppose that we have 14 elements.
1321 * Let z1, z2,... zE be the 14 values to invert (index noted in
1322 * hexadecimal, starting at 1).
1323 *
1324 * - Depth 1:
1325 * swap(z1, z2); z12 = z1*z2
1326 * swap(z3, z4); z34 = z3*z4
1327 * swap(z5, z6); z56 = z5*z6
1328 * swap(z7, z8); z78 = z7*z8
1329 * swap(z9, zA); z9A = z9*zA
1330 * swap(zB, zC); zBC = zB*zC
1331 * swap(zD, zE); zDE = zD*zE
1332 *
1333 * - Depth 2:
1334 * z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
1335 * z1234 = z12*z34
1336 * z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
1337 * z5678 = z56*z78
1338 * z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
1339 * z9ABC = z9A*zBC
1340 *
1341 * - Depth 3:
1342 * z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
1343 * z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
1344 * z12345678 = z1234*z5678
1345 * z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
1346 * zD <- zD*z9ABC, zE*z9ABC
1347 * z9ABCDE = z9ABC*zDE
1348 *
1349 * - Depth 4:
1350 * multiply z1..z8 by z9ABCDE
1351 * multiply z9..zE by z12345678
1352 * final z = z12345678*z9ABCDE
1353 */
1354
1355 uint64_t z[16][4];
1356 int i, k, s;
1357 #define zt (z[15])
1358 #define zu (z[14])
1359 #define zv (z[13])
1360
1361 /*
1362 * First recursion step (pairwise swapping and multiplication).
1363 * If there is an odd number of elements, then we "invent" an
1364 * extra one with coordinate Z = 1 (in Montgomery representation).
1365 */
1366 for (i = 0; (i + 1) < num; i += 2) {
1367 memcpy(zt, jac[i].z, sizeof zt);
1368 memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
1369 memcpy(jac[i + 1].z, zt, sizeof zt);
1370 f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
1371 }
1372 if ((num & 1) != 0) {
1373 memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
1374 memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
1375 }
1376
1377 /*
1378 * Perform further recursion steps. At the entry of each step,
1379 * the process has been done for groups of 's' points. The
1380 * integer k is the log2 of s.
1381 */
1382 for (k = 1, s = 2; s < num; k ++, s <<= 1) {
1383 int n;
1384
1385 for (i = 0; i < num; i ++) {
1386 f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
1387 }
1388 n = (num + s - 1) >> k;
1389 for (i = 0; i < (n >> 1); i ++) {
1390 f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
1391 }
1392 if ((n & 1) != 0) {
1393 memmove(z[n >> 1], z[n], sizeof zt);
1394 }
1395 }
1396
1397 /*
1398 * Invert the final result, and convert all points.
1399 */
1400 f256_invert(zt, z[0]);
1401 for (i = 0; i < num; i ++) {
1402 f256_montymul(zv, jac[i].z, zt);
1403 f256_montysquare(zu, zv);
1404 f256_montymul(zv, zv, zu);
1405 f256_montymul(aff[i].x, jac[i].x, zu);
1406 f256_montymul(aff[i].y, jac[i].y, zv);
1407 }
1408 }
1409
1410 /*
1411 * Multiply the provided point by an integer.
1412 * Assumptions:
1413 * - Source point is a valid curve point.
1414 * - Source point is not the point-at-infinity.
1415 * - Integer is not 0, and is lower than the curve order.
1416 * If these conditions are not met, then the result is indeterminate
1417 * (but the process is still constant-time).
1418 */
1419 static void
1420 p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
1421 {
1422 union {
1423 p256_affine aff[15];
1424 p256_jacobian jac[15];
1425 } window;
1426 int i;
1427
1428 /*
1429 * Compute window, in Jacobian coordinates.
1430 */
1431 window.jac[0] = *P;
1432 for (i = 2; i < 16; i ++) {
1433 window.jac[i - 1] = window.jac[(i >> 1) - 1];
1434 if ((i & 1) == 0) {
1435 p256_double(&window.jac[i - 1]);
1436 } else {
1437 p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
1438 }
1439 }
1440
1441 /*
1442 * Convert the window points to affine coordinates. Point
1443 * window[0] is the source point, already in affine coordinates.
1444 */
1445 window_to_affine(window.aff, window.jac, 15);
1446
1447 /*
1448 * Perform point multiplication.
1449 */
1450 point_mul_inner(P, window.aff, k, klen);
1451 }
1452
1453 /*
1454 * Precomputed window for the conventional generator: P256_Gwin[n]
1455 * contains (n+1)*G (affine coordinates, in Montgomery representation).
1456 */
1457 static const p256_affine P256_Gwin[] = {
1458 {
1459 { 0x79E730D418A9143C, 0x75BA95FC5FEDB601,
1460 0x79FB732B77622510, 0x18905F76A53755C6 },
1461 { 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C,
1462 0xD2E88688DD21F325, 0x8571FF1825885D85 }
1463 },
1464 {
1465 { 0x850046D410DDD64D, 0xAA6AE3C1A433827D,
1466 0x732205038D1490D9, 0xF6BB32E43DCF3A3B },
1467 { 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8,
1468 0x19A8FB0E92042DBE, 0x78C577510A5B8A3B }
1469 },
1470 {
1471 { 0xFFAC3F904EEBC127, 0xB027F84A087D81FB,
1472 0x66AD77DD87CBBC98, 0x26936A3FB6FF747E },
1473 { 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A,
1474 0x788208311A2EE98E, 0xD5F06A29E587CC07 }
1475 },
1476 {
1477 { 0x74B0B50D46918DCC, 0x4650A6EDC623C173,
1478 0x0CDAACACE8100AF2, 0x577362F541B0176B },
1479 { 0x2D96F24CE4CBABA6, 0x17628471FAD6F447,
1480 0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 }
1481 },
1482 {
1483 { 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D,
1484 0x941CB5AAD076C20C, 0xC9079605890523C8 },
1485 { 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B,
1486 0x3540A9877E7A1F68, 0x73A076BB2DD1E916 }
1487 },
1488 {
1489 { 0x403947373E77664A, 0x55AE744F346CEE3E,
1490 0xD50A961A5B17A3AD, 0x13074B5954213673 },
1491 { 0x93D36220D377E44B, 0x299C2B53ADFF14B5,
1492 0xF424D44CEF639F11, 0xA4C9916D4A07F75F }
1493 },
1494 {
1495 { 0x0746354EA0173B4F, 0x2BD20213D23C00F7,
1496 0xF43EAAB50C23BB08, 0x13BA5119C3123E03 },
1497 { 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD,
1498 0xEF933BDC77C94195, 0xEAEDD9156E240867 }
1499 },
1500 {
1501 { 0x27F14CD19499A78F, 0x462AB5C56F9B3455,
1502 0x8F90F02AF02CFC6B, 0xB763891EB265230D },
1503 { 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15,
1504 0x123C7B84BE60BBF0, 0x56EC12F27706DF76 }
1505 },
1506 {
1507 { 0x75C96E8F264E20E8, 0xABE6BFED59A7A841,
1508 0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B },
1509 { 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3,
1510 0x2B6E019A88B12F1A, 0x086659CDFD835F9B }
1511 },
1512 {
1513 { 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139,
1514 0x737D2CD648250B49, 0xCC61C94724B3428F },
1515 { 0x0C2B407880DD9E76, 0xC43A8991383FBE08,
1516 0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 }
1517 },
1518 {
1519 { 0xEA7D260A6245E404, 0x9DE407956E7FDFE0,
1520 0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 },
1521 { 0x1A7685612B944E88, 0x250F939EE57F61C8,
1522 0x0C0DAA891EAD643D, 0x68930023E125B88E }
1523 },
1524 {
1525 { 0x04B71AA7D2697768, 0xABDEDEF5CA345A33,
1526 0x2409D29DEE37385E, 0x4EE1DF77CB83E156 },
1527 { 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637,
1528 0x28228CFA8ADE6D66, 0x7FF57C9553238ACA }
1529 },
1530 {
1531 { 0xCCC425634B2ED709, 0x0E356769856FD30D,
1532 0xBCBCD43F559E9811, 0x738477AC5395B759 },
1533 { 0x35752B90C00EE17F, 0x68748390742ED2E3,
1534 0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 }
1535 },
1536 {
1537 { 0xA242A35BB0CF664A, 0x126E48F77F9707E3,
1538 0x1717BF54C6832660, 0xFAAE7332FD12C72E },
1539 { 0x27B52DB7995D586B, 0xBE29569E832237C2,
1540 0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB }
1541 },
1542 {
1543 { 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B,
1544 0xEE337424E4819370, 0xE2AA0E430AD3DA09 },
1545 { 0x40B8524F6383C45D, 0xD766355442A41B25,
1546 0x64EFA6DE778A4797, 0x2042170A7079ADF4 }
1547 }
1548 };
1549
1550 /*
1551 * Multiply the conventional generator of the curve by the provided
1552 * integer. Return is written in *P.
1553 *
1554 * Assumptions:
1555 * - Integer is not 0, and is lower than the curve order.
1556 * If this conditions is not met, then the result is indeterminate
1557 * (but the process is still constant-time).
1558 */
1559 static void
1560 p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
1561 {
1562 point_mul_inner(P, P256_Gwin, k, klen);
1563 }
1564
1565 /*
1566 * Return 1 if all of the following hold:
1567 * - klen <= 32
1568 * - k != 0
1569 * - k is lower than the curve order
1570 * Otherwise, return 0.
1571 *
1572 * Constant-time behaviour: only klen may be observable.
1573 */
1574 static uint32_t
1575 check_scalar(const unsigned char *k, size_t klen)
1576 {
1577 uint32_t z;
1578 int32_t c;
1579 size_t u;
1580
1581 if (klen > 32) {
1582 return 0;
1583 }
1584 z = 0;
1585 for (u = 0; u < klen; u ++) {
1586 z |= k[u];
1587 }
1588 if (klen == 32) {
1589 c = 0;
1590 for (u = 0; u < klen; u ++) {
1591 c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
1592 }
1593 } else {
1594 c = -1;
1595 }
1596 return NEQ(z, 0) & LT0(c);
1597 }
1598
1599 static uint32_t
1600 api_mul(unsigned char *G, size_t Glen,
1601 const unsigned char *k, size_t klen, int curve)
1602 {
1603 uint32_t r;
1604 p256_jacobian P;
1605
1606 (void)curve;
1607 if (Glen != 65) {
1608 return 0;
1609 }
1610 r = check_scalar(k, klen);
1611 r &= point_decode(&P, G);
1612 p256_mul(&P, k, klen);
1613 r &= point_encode(G, &P);
1614 return r;
1615 }
1616
1617 static size_t
1618 api_mulgen(unsigned char *R,
1619 const unsigned char *k, size_t klen, int curve)
1620 {
1621 p256_jacobian P;
1622
1623 (void)curve;
1624 p256_mulgen(&P, k, klen);
1625 point_encode(R, &P);
1626 return 65;
1627 }
1628
1629 static uint32_t
1630 api_muladd(unsigned char *A, const unsigned char *B, size_t len,
1631 const unsigned char *x, size_t xlen,
1632 const unsigned char *y, size_t ylen, int curve)
1633 {
1634 /*
1635 * We might want to use Shamir's trick here: make a composite
1636 * window of u*P+v*Q points, to merge the two doubling-ladders
1637 * into one. This, however, has some complications:
1638 *
1639 * - During the computation, we may hit the point-at-infinity.
1640 * Thus, we would need p256_add_complete_mixed() (complete
1641 * formulas for point addition), with a higher cost (17 muls
1642 * instead of 11).
1643 *
1644 * - A 4-bit window would be too large, since it would involve
1645 * 16*16-1 = 255 points. For the same window size as in the
1646 * p256_mul() case, we would need to reduce the window size
1647 * to 2 bits, and thus perform twice as many non-doubling
1648 * point additions.
1649 *
1650 * - The window may itself contain the point-at-infinity, and
1651 * thus cannot be in all generality be made of affine points.
1652 * Instead, we would need to make it a window of points in
1653 * Jacobian coordinates. Even p256_add_complete_mixed() would
1654 * be inappropriate.
1655 *
1656 * For these reasons, the code below performs two separate
1657 * point multiplications, then computes the final point addition
1658 * (which is both a "normal" addition, and a doubling, to handle
1659 * all cases).
1660 */
1661
1662 p256_jacobian P, Q;
1663 uint32_t r, t, s;
1664 uint64_t z;
1665
1666 (void)curve;
1667 if (len != 65) {
1668 return 0;
1669 }
1670 r = point_decode(&P, A);
1671 p256_mul(&P, x, xlen);
1672 if (B == NULL) {
1673 p256_mulgen(&Q, y, ylen);
1674 } else {
1675 r &= point_decode(&Q, B);
1676 p256_mul(&Q, y, ylen);
1677 }
1678
1679 /*
1680 * The final addition may fail in case both points are equal.
1681 */
1682 t = p256_add(&P, &Q);
1683 f256_final_reduce(P.z);
1684 z = P.z[0] | P.z[1] | P.z[2] | P.z[3];
1685 s = EQ((uint32_t)(z | (z >> 32)), 0);
1686 p256_double(&Q);
1687
1688 /*
1689 * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
1690 * have the following:
1691 *
1692 * s = 0, t = 0 return P (normal addition)
1693 * s = 0, t = 1 return P (normal addition)
1694 * s = 1, t = 0 return Q (a 'double' case)
1695 * s = 1, t = 1 report an error (P+Q = 0)
1696 */
1697 CCOPY(s & ~t, &P, &Q, sizeof Q);
1698 point_encode(A, &P);
1699 r &= ~(s & t);
1700 return r;
1701 }
1702
1703 /* see bearssl_ec.h */
1704 const br_ec_impl br_ec_p256_m64 = {
1705 (uint32_t)0x00800000,
1706 &api_generator,
1707 &api_order,
1708 &api_xoff,
1709 &api_mul,
1710 &api_mulgen,
1711 &api_muladd
1712 };
1713
1714 /* see bearssl_ec.h */
1715 const br_ec_impl *
1716 br_ec_p256_m64_get(void)
1717 {
1718 return &br_ec_p256_m64;
1719 }
1720
1721 #else
1722
1723 /* see bearssl_ec.h */
1724 const br_ec_impl *
1725 br_ec_p256_m64_get(void)
1726 {
1727 return 0;
1728 }
1729
1730 #endif