Removed needless variable shadowing (suggested by Doug Hogan).
[BearSSL] / src / ec / ecdsa_i31_sign_raw.c
1 /*
2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include "inner.h"
26
27 #define I31_LEN ((BR_MAX_EC_SIZE + 61) / 31)
28 #define POINT_LEN (1 + (((BR_MAX_EC_SIZE + 7) >> 3) << 1))
29 #define ORDER_LEN ((BR_MAX_EC_SIZE + 7) >> 3)
30
31 /* see bearssl_ec.h */
32 size_t
33 br_ecdsa_i31_sign_raw(const br_ec_impl *impl,
34 const br_hash_class *hf, const void *hash_value,
35 const br_ec_private_key *sk, void *sig)
36 {
37 /*
38 * IMPORTANT: this code is fit only for curves with a prime
39 * order. This is needed so that modular reduction of the X
40 * coordinate of a point can be done with a simple subtraction.
41 * We also rely on the last byte of the curve order to be distinct
42 * from 0 and 1.
43 */
44 const br_ec_curve_def *cd;
45 uint32_t n[I31_LEN], r[I31_LEN], s[I31_LEN], x[I31_LEN];
46 uint32_t m[I31_LEN], k[I31_LEN], t1[I31_LEN], t2[I31_LEN];
47 unsigned char tt[ORDER_LEN << 1];
48 unsigned char eU[POINT_LEN];
49 size_t hash_len, nlen, ulen;
50 uint32_t n0i, ctl;
51 br_hmac_drbg_context drbg;
52
53 /*
54 * Get the curve parameters (generator and order).
55 */
56 switch (sk->curve) {
57 case BR_EC_secp256r1:
58 cd = &br_secp256r1;
59 break;
60 case BR_EC_secp384r1:
61 cd = &br_secp384r1;
62 break;
63 case BR_EC_secp521r1:
64 cd = &br_secp521r1;
65 break;
66 default:
67 return 0;
68 }
69
70 /*
71 * Get modulus.
72 */
73 nlen = cd->order_len;
74 br_i31_decode(n, cd->order, nlen);
75 n0i = br_i31_ninv31(n[1]);
76
77 /*
78 * Get private key as an i31 integer. This also checks that the
79 * private key is well-defined (not zero, and less than the
80 * curve order).
81 */
82 if (!br_i31_decode_mod(x, sk->x, sk->xlen, n)) {
83 return 0;
84 }
85 if (br_i31_iszero(x)) {
86 return 0;
87 }
88
89 /*
90 * Get hash length.
91 */
92 hash_len = (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
93
94 /*
95 * Truncate and reduce the hash value modulo the curve order.
96 */
97 br_ecdsa_i31_bits2int(m, hash_value, hash_len, n[0]);
98 br_i31_sub(m, n, br_i31_sub(m, n, 0) ^ 1);
99
100 /*
101 * RFC 6979 generation of the "k" value.
102 *
103 * The process uses HMAC_DRBG (with the hash function used to
104 * process the message that is to be signed). The seed is the
105 * concatenation of the encodings of the private key and
106 * the hash value (after truncation and modular reduction).
107 */
108 br_i31_encode(tt, nlen, x);
109 br_i31_encode(tt + nlen, nlen, m);
110 br_hmac_drbg_init(&drbg, hf, tt, nlen << 1);
111 for (;;) {
112 br_hmac_drbg_generate(&drbg, tt, nlen);
113 br_ecdsa_i31_bits2int(k, tt, nlen, n[0]);
114 if (br_i31_iszero(k)) {
115 continue;
116 }
117 if (br_i31_sub(k, n, 0)) {
118 break;
119 }
120 }
121
122 /*
123 * Compute k*G and extract the X coordinate, then reduce it
124 * modulo the curve order. Since we support only curves with
125 * prime order, that reduction is only a matter of computing
126 * a subtraction.
127 */
128 ulen = cd->generator_len;
129 memcpy(eU, cd->generator, ulen);
130 br_i31_encode(tt, nlen, k);
131 if (!impl->mul(eU, ulen, tt, nlen, sk->curve)) {
132 /*
133 * Point multiplication may fail here only if the
134 * EC implementation does not support the curve, or the
135 * private key is incorrect (x is a multiple of the curve
136 * order).
137 */
138 return 0;
139 }
140 br_i31_zero(r, n[0]);
141 br_i31_decode(r, &eU[1], ulen >> 1);
142 r[0] = n[0];
143 br_i31_sub(r, n, br_i31_sub(r, n, 0) ^ 1);
144
145 /*
146 * Compute 1/k in double-Montgomery representation. We do so by
147 * first converting _from_ Montgomery representation (twice),
148 * then using a modular exponentiation.
149 */
150 br_i31_from_monty(k, n, n0i);
151 br_i31_from_monty(k, n, n0i);
152 memcpy(tt, cd->order, nlen);
153 tt[nlen - 1] -= 2;
154 br_i31_modpow(k, tt, nlen, n, n0i, t1, t2);
155
156 /*
157 * Compute s = (m+xr)/k (mod n).
158 * The k[] array contains R^2/k (double-Montgomery representation);
159 * we thus can use direct Montgomery multiplications and conversions
160 * from Montgomery, avoiding any call to br_i31_to_monty() (which
161 * is slower).
162 */
163 br_i31_from_monty(m, n, n0i);
164 br_i31_montymul(t1, x, r, n, n0i);
165 ctl = br_i31_add(t1, m, 1);
166 ctl |= br_i31_sub(t1, n, 0) ^ 1;
167 br_i31_sub(t1, n, ctl);
168 br_i31_montymul(s, t1, k, n, n0i);
169
170 /*
171 * Encode r and s in the signature.
172 */
173 br_i31_encode(sig, nlen, r);
174 br_i31_encode((unsigned char *)sig + nlen, nlen, s);
175 return nlen << 1;
176 }