Fixed behaviour in case of rejected renegotiation.
[BearSSL] / src / ssl / ssl_hs_server.t0
1 \ Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
2 \
3 \ Permission is hereby granted, free of charge, to any person obtaining
4 \ a copy of this software and associated documentation files (the
5 \ "Software"), to deal in the Software without restriction, including
6 \ without limitation the rights to use, copy, modify, merge, publish,
7 \ distribute, sublicense, and/or sell copies of the Software, and to
8 \ permit persons to whom the Software is furnished to do so, subject to
9 \ the following conditions:
10 \
11 \ The above copyright notice and this permission notice shall be
12 \ included in all copies or substantial portions of the Software.
13 \
14 \ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
15 \ EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
16 \ MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
17 \ NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
18 \ BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
19 \ ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
20 \ CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 \ SOFTWARE.
22
23 \ ----------------------------------------------------------------------
24 \ Handshake processing code, for the server.
25 \ The common T0 code (ssl_hs_common.t0) shall be read first.
26
27 preamble {
28
29 /*
30 * This macro evaluates to a pointer to the server context, under that
31 * specific name. It must be noted that since the engine context is the
32 * first field of the br_ssl_server_context structure ('eng'), then
33 * pointers values of both types are interchangeable, modulo an
34 * appropriate cast. This also means that "adresses" computed as offsets
35 * within the structure work for both kinds of context.
36 */
37 #define CTX ((br_ssl_server_context *)ENG)
38
39 /*
40 * Decrypt the pre-master secret (RSA key exchange).
41 */
42 static void
43 do_rsa_decrypt(br_ssl_server_context *ctx, int prf_id,
44 unsigned char *epms, size_t len)
45 {
46 uint32_t x;
47 unsigned char rpms[48];
48
49 /*
50 * Decrypt the PMS.
51 */
52 x = (*ctx->policy_vtable)->do_keyx(ctx->policy_vtable, epms, &len);
53
54 /*
55 * Set the first two bytes to the maximum supported client
56 * protocol version. These bytes are used for version rollback
57 * detection; forceing the two bytes will make the master secret
58 * wrong if the bytes are not correct. This process is
59 * recommended by RFC 5246 (section 7.4.7.1).
60 */
61 br_enc16be(epms, ctx->client_max_version);
62
63 /*
64 * Make a random PMS and copy it above the decrypted value if the
65 * decryption failed. Note that we use a constant-time conditional
66 * copy.
67 */
68 br_hmac_drbg_generate(&ctx->eng.rng, rpms, sizeof rpms);
69 br_ccopy(x ^ 1, epms, rpms, sizeof rpms);
70
71 /*
72 * Compute master secret.
73 */
74 br_ssl_engine_compute_master(&ctx->eng, prf_id, epms, 48);
75
76 /*
77 * Clear the pre-master secret from RAM: it is normally a buffer
78 * in the context, hence potentially long-lived.
79 */
80 memset(epms, 0, len);
81 }
82
83 /*
84 * Common part for ECDH and ECDHE.
85 */
86 static void
87 ecdh_common(br_ssl_server_context *ctx, int prf_id,
88 unsigned char *xcoor, size_t xcoor_len, uint32_t ctl)
89 {
90 unsigned char rpms[80];
91
92 if (xcoor_len > sizeof rpms) {
93 xcoor_len = sizeof rpms;
94 ctl = 0;
95 }
96
97 /*
98 * Make a random PMS and copy it above the decrypted value if the
99 * decryption failed. Note that we use a constant-time conditional
100 * copy.
101 */
102 br_hmac_drbg_generate(&ctx->eng.rng, rpms, xcoor_len);
103 br_ccopy(ctl ^ 1, xcoor, rpms, xcoor_len);
104
105 /*
106 * Compute master secret.
107 */
108 br_ssl_engine_compute_master(&ctx->eng, prf_id, xcoor, xcoor_len);
109
110 /*
111 * Clear the pre-master secret from RAM: it is normally a buffer
112 * in the context, hence potentially long-lived.
113 */
114 memset(xcoor, 0, xcoor_len);
115 }
116
117 /*
118 * Do the ECDH key exchange (not ECDHE).
119 */
120 static void
121 do_ecdh(br_ssl_server_context *ctx, int prf_id,
122 unsigned char *cpoint, size_t cpoint_len)
123 {
124 uint32_t x;
125
126 /*
127 * Finalise the key exchange.
128 */
129 x = (*ctx->policy_vtable)->do_keyx(ctx->policy_vtable,
130 cpoint, &cpoint_len);
131 ecdh_common(ctx, prf_id, cpoint, cpoint_len, x);
132 }
133
134 /*
135 * Do the full static ECDH key exchange. When this function is called,
136 * it has already been verified that the cipher suite uses ECDH (not ECDHE),
137 * and the client's public key (from its certificate) has type EC and is
138 * apt for key exchange.
139 */
140 static void
141 do_static_ecdh(br_ssl_server_context *ctx, int prf_id)
142 {
143 unsigned char cpoint[133];
144 size_t cpoint_len;
145 const br_x509_class **xc;
146 const br_x509_pkey *pk;
147
148 xc = ctx->eng.x509ctx;
149 pk = (*xc)->get_pkey(xc, NULL);
150 cpoint_len = pk->key.ec.qlen;
151 if (cpoint_len > sizeof cpoint) {
152 /*
153 * If the point is larger than our buffer then we need to
154 * restrict it. Length 2 is not a valid point length, so
155 * the ECDH will fail.
156 */
157 cpoint_len = 2;
158 }
159 memcpy(cpoint, pk->key.ec.q, cpoint_len);
160 do_ecdh(ctx, prf_id, cpoint, cpoint_len);
161 }
162
163 static size_t
164 hash_data(br_ssl_server_context *ctx,
165 void *dst, int hash_id, const void *src, size_t len)
166 {
167 const br_hash_class *hf;
168 br_hash_compat_context hc;
169
170 if (hash_id == 0) {
171 unsigned char tmp[36];
172
173 hf = br_multihash_getimpl(&ctx->eng.mhash, br_md5_ID);
174 if (hf == NULL) {
175 return 0;
176 }
177 hf->init(&hc.vtable);
178 hf->update(&hc.vtable, src, len);
179 hf->out(&hc.vtable, tmp);
180 hf = br_multihash_getimpl(&ctx->eng.mhash, br_sha1_ID);
181 if (hf == NULL) {
182 return 0;
183 }
184 hf->init(&hc.vtable);
185 hf->update(&hc.vtable, src, len);
186 hf->out(&hc.vtable, tmp + 16);
187 memcpy(dst, tmp, 36);
188 return 36;
189 } else {
190 hf = br_multihash_getimpl(&ctx->eng.mhash, hash_id);
191 if (hf == NULL) {
192 return 0;
193 }
194 hf->init(&hc.vtable);
195 hf->update(&hc.vtable, src, len);
196 hf->out(&hc.vtable, dst);
197 return (hf->desc >> BR_HASHDESC_OUT_OFF) & BR_HASHDESC_OUT_MASK;
198 }
199 }
200
201 /*
202 * Do the ECDHE key exchange (part 1: generation of transient key, and
203 * computing of the point to send to the client). Returned value is the
204 * signature length (in bytes), or -x on error (with x being an error
205 * code). The encoded point is written in the ecdhe_point[] context buffer
206 * (length in ecdhe_point_len).
207 */
208 static int
209 do_ecdhe_part1(br_ssl_server_context *ctx, int curve)
210 {
211 unsigned algo_id;
212 unsigned mask;
213 const unsigned char *order;
214 size_t olen, glen;
215 size_t hv_len, sig_len;
216
217 if (!((ctx->eng.iec->supported_curves >> curve) & 1)) {
218 return -BR_ERR_INVALID_ALGORITHM;
219 }
220 ctx->eng.ecdhe_curve = curve;
221
222 /*
223 * Generate our private key. We need a non-zero random value
224 * which is lower than the curve order, in a "large enough"
225 * range. We force the top bit to 0 and bottom bit to 1, which
226 * does the trick. Note that contrary to what happens in ECDSA,
227 * this is not a problem if we do not cover the full range of
228 * possible values.
229 */
230 order = ctx->eng.iec->order(curve, &olen);
231 mask = 0xFF;
232 while (mask >= order[0]) {
233 mask >>= 1;
234 }
235 br_hmac_drbg_generate(&ctx->eng.rng, ctx->ecdhe_key, olen);
236 ctx->ecdhe_key[0] &= mask;
237 ctx->ecdhe_key[olen - 1] |= 0x01;
238 ctx->ecdhe_key_len = olen;
239
240 /*
241 * Compute our ECDH point.
242 */
243 glen = ctx->eng.iec->mulgen(ctx->eng.ecdhe_point,
244 ctx->ecdhe_key, olen, curve);
245 ctx->eng.ecdhe_point_len = glen;
246
247 /*
248 * Assemble the message to be signed, and possibly hash it.
249 */
250 memcpy(ctx->eng.pad, ctx->eng.client_random, 32);
251 memcpy(ctx->eng.pad + 32, ctx->eng.server_random, 32);
252 ctx->eng.pad[64 + 0] = 0x03;
253 ctx->eng.pad[64 + 1] = 0x00;
254 ctx->eng.pad[64 + 2] = curve;
255 ctx->eng.pad[64 + 3] = ctx->eng.ecdhe_point_len;
256 memcpy(ctx->eng.pad + 64 + 4,
257 ctx->eng.ecdhe_point, ctx->eng.ecdhe_point_len);
258 hv_len = 64 + 4 + ctx->eng.ecdhe_point_len;
259 algo_id = ctx->sign_hash_id;
260 if (algo_id >= (unsigned)0xFF00) {
261 hv_len = hash_data(ctx, ctx->eng.pad, algo_id & 0xFF,
262 ctx->eng.pad, hv_len);
263 if (hv_len == 0) {
264 return -BR_ERR_INVALID_ALGORITHM;
265 }
266 }
267
268 sig_len = (*ctx->policy_vtable)->do_sign(ctx->policy_vtable,
269 algo_id, ctx->eng.pad, hv_len, sizeof ctx->eng.pad);
270 return sig_len ? (int)sig_len : -BR_ERR_INVALID_ALGORITHM;
271 }
272
273 /*
274 * Do the ECDHE key exchange (part 2: computation of the shared secret
275 * from the point sent by the client).
276 */
277 static void
278 do_ecdhe_part2(br_ssl_server_context *ctx, int prf_id,
279 unsigned char *cpoint, size_t cpoint_len)
280 {
281 int curve;
282 uint32_t ctl;
283 size_t xoff, xlen;
284
285 curve = ctx->eng.ecdhe_curve;
286
287 /*
288 * Finalise the key exchange.
289 */
290 ctl = ctx->eng.iec->mul(cpoint, cpoint_len,
291 ctx->ecdhe_key, ctx->ecdhe_key_len, curve);
292 xoff = ctx->eng.iec->xoff(curve, &xlen);
293 ecdh_common(ctx, prf_id, cpoint + xoff, xlen, ctl);
294
295 /*
296 * Clear the ECDHE private key. Forward Secrecy is achieved insofar
297 * as that key does not get stolen, so we'd better destroy it
298 * as soon as it ceases to be useful.
299 */
300 memset(ctx->ecdhe_key, 0, ctx->ecdhe_key_len);
301 }
302
303 /*
304 * Offset for hash value within the pad (when obtaining all hash values,
305 * in preparation for verification of the CertificateVerify message).
306 * Order is MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512; last value
307 * is used to get the total length.
308 */
309 static const unsigned char HASH_PAD_OFF[] = { 0, 16, 36, 64, 96, 144, 208 };
310
311 /*
312 * OID for hash functions in RSA signatures.
313 */
314 static const unsigned char HASH_OID_SHA1[] = {
315 0x05, 0x2B, 0x0E, 0x03, 0x02, 0x1A
316 };
317
318 static const unsigned char HASH_OID_SHA224[] = {
319 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x04
320 };
321
322 static const unsigned char HASH_OID_SHA256[] = {
323 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x01
324 };
325
326 static const unsigned char HASH_OID_SHA384[] = {
327 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x02
328 };
329
330 static const unsigned char HASH_OID_SHA512[] = {
331 0x09, 0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x02, 0x03
332 };
333
334 static const unsigned char *HASH_OID[] = {
335 HASH_OID_SHA1,
336 HASH_OID_SHA224,
337 HASH_OID_SHA256,
338 HASH_OID_SHA384,
339 HASH_OID_SHA512
340 };
341
342 /*
343 * Verify the signature in CertificateVerify. Returned value is 0 on
344 * success, or a non-zero error code. Lack of implementation of the
345 * designated signature algorithm is reported as a "bad signature"
346 * error (because it means that the peer did not honour our advertised
347 * set of supported signature algorithms).
348 */
349 static int
350 verify_CV_sig(br_ssl_server_context *ctx, size_t sig_len)
351 {
352 const br_x509_class **xc;
353 const br_x509_pkey *pk;
354 int id;
355
356 id = ctx->hash_CV_id;
357 xc = ctx->eng.x509ctx;
358 pk = (*xc)->get_pkey(xc, NULL);
359 if (pk->key_type == BR_KEYTYPE_RSA) {
360 unsigned char tmp[64];
361 const unsigned char *hash_oid;
362
363 if (id == 0) {
364 hash_oid = NULL;
365 } else {
366 hash_oid = HASH_OID[id - 2];
367 }
368 if (ctx->eng.irsavrfy == 0) {
369 return BR_ERR_BAD_SIGNATURE;
370 }
371 if (!ctx->eng.irsavrfy(ctx->eng.pad, sig_len,
372 hash_oid, ctx->hash_CV_len, &pk->key.rsa, tmp)
373 || memcmp(tmp, ctx->hash_CV, ctx->hash_CV_len) != 0)
374 {
375 return BR_ERR_BAD_SIGNATURE;
376 }
377 } else {
378 if (ctx->eng.iecdsa == 0) {
379 return BR_ERR_BAD_SIGNATURE;
380 }
381 if (!ctx->eng.iecdsa(ctx->eng.iec,
382 ctx->hash_CV, ctx->hash_CV_len,
383 &pk->key.ec, ctx->eng.pad, sig_len))
384 {
385 return BR_ERR_BAD_SIGNATURE;
386 }
387 }
388 return 0;
389 }
390
391 }
392
393 \ =======================================================================
394
395 : addr-ctx:
396 next-word { field }
397 "addr-" field + 0 1 define-word
398 0 8191 "offsetof(br_ssl_server_context, " field + ")" + make-CX
399 postpone literal postpone ; ;
400
401 addr-ctx: client_max_version
402 addr-ctx: client_suites
403 addr-ctx: client_suites_num
404 addr-ctx: hashes
405 addr-ctx: curves
406 addr-ctx: sign_hash_id
407
408 \ Get address and length of the client_suites[] buffer. Length is expressed
409 \ in bytes.
410 : addr-len-client_suites ( -- addr len )
411 addr-client_suites
412 CX 0 1023 { BR_MAX_CIPHER_SUITES * sizeof(br_suite_translated) } ;
413
414 \ Read the client SNI extension.
415 : read-client-sni ( lim -- lim )
416 \ Open extension value.
417 read16 open-elt
418
419 \ Open ServerNameList.
420 read16 open-elt
421
422 \ Find if there is a name of type 0 (host_name) with a length
423 \ that fits in our dedicated buffer.
424 begin dup while
425 read8 if
426 read-ignore-16
427 else
428 read16
429 dup 255 <= if
430 dup addr-server_name + 0 swap set8
431 addr-server_name swap read-blob
432 else
433 skip-blob
434 then
435 then
436 repeat
437
438 \ Close ServerNameList.
439 close-elt
440
441 \ Close extension value.
442 close-elt ;
443
444 \ Set the new maximum fragment length. BEWARE: this shall be called only
445 \ after reading the ClientHello and before writing the ServerHello.
446 cc: set-max-frag-len ( len -- ) {
447 size_t max_frag_len = T0_POP();
448
449 br_ssl_engine_new_max_frag_len(ENG, max_frag_len);
450
451 /*
452 * We must adjust our own output limit. Since we call this only
453 * after receiving a ClientHello and before beginning to send
454 * the ServerHello, the next output record should be empty at
455 * that point, so we can use max_frag_len as a limit.
456 */
457 if (ENG->hlen_out > max_frag_len) {
458 ENG->hlen_out = max_frag_len;
459 }
460 }
461
462 \ Read the client Max Frag Length extension.
463 : read-client-frag ( lim -- lim )
464 \ Extension value must have length exactly 1 byte.
465 read16 1 <> if ERR_BAD_FRAGLEN fail then
466 read8
467
468 \ The byte value must be 1, 2, 3 or 4.
469 dup dup 0= swap 5 >= or if ERR_BAD_FRAGLEN fail then
470
471 \ If our own maximum fragment length is greater, then we reduce
472 \ our length.
473 8 + dup addr-log_max_frag_len get8 < if
474 dup 1 swap << set-max-frag-len
475 dup addr-log_max_frag_len set8
476 addr-peer_log_max_frag_len set8
477 else
478 drop
479 then ;
480
481 \ Read the Secure Renegotiation extension from the client.
482 : read-client-reneg ( lim -- lim )
483 \ Get value length.
484 read16
485
486 \ The "reneg" value is one of:
487 \ 0 on first handshake, client support is unknown
488 \ 1 client does not support secure renegotiation
489 \ 2 client supports secure renegotiation
490 addr-reneg get8 case
491 0 of
492 \ First handshake, value length shall be 1.
493 1 = ifnot ERR_BAD_SECRENEG fail then
494 read8 if ERR_BAD_SECRENEG fail then
495 2 addr-reneg set8
496 endof
497 2 of
498 \ Renegotiation, value shall consist of 13 bytes
499 \ (header + copy of the saved client "Finished").
500 13 = ifnot ERR_BAD_SECRENEG fail then
501 read8 12 = ifnot ERR_BAD_SECRENEG fail then
502 addr-pad 12 read-blob
503 addr-saved_finished addr-pad 12 memcmp ifnot
504 ERR_BAD_SECRENEG fail
505 then
506 endof
507
508 \ If "reneg" is 1 then the client is not supposed to support
509 \ the extension, and it sends it nonetheless, which means
510 \ foul play.
511 ERR_BAD_SECRENEG fail
512 endcase ;
513
514 \ Read the Signature Algorithms extension.
515 : read-signatures ( lim -- lim )
516 \ Open extension value.
517 read16 open-elt
518
519 read-list-sign-algos addr-hashes set32
520
521 \ Close extension value.
522 close-elt ;
523
524 \ Read the Supported Curves extension.
525 : read-supported-curves ( lim -- lim )
526 \ Open extension value.
527 read16 open-elt
528
529 \ Open list of curve identifiers.
530 read16 open-elt
531
532 \ Get all supported curves.
533 0 addr-curves set32
534 begin dup while
535 read16 dup 32 < if
536 1 swap << addr-curves get32 or addr-curves set32
537 else
538 drop
539 then
540 repeat
541 close-elt
542 close-elt ;
543
544 \ Read the ALPN extension from client.
545 : read-ALPN-from-client ( lim -- lim )
546 \ If we do not have configured names, then we just ignore the
547 \ extension.
548 addr-protocol_names_num get16 ifnot read-ignore-16 ret then
549
550 \ Open extension value.
551 read16 open-elt
552
553 \ Open list of protocol names.
554 read16 open-elt
555
556 \ Get all names and test for their support. We keep the one with
557 \ the lowest index (because we apply server's preferences, as
558 \ recommended by RFC 7301, section 3.2. We set the 'found' variable
559 \ to -2 and use an unsigned comparison, making -2 a huge value.
560 -2 { found }
561 begin dup while
562 read8 dup { len } addr-pad swap read-blob
563 len test-protocol-name dup found u< if
564 >found
565 else
566 drop
567 then
568 repeat
569
570 \ End of extension.
571 close-elt
572 close-elt
573
574 \ Write back found name index (or not). If no match was found,
575 \ then we write -1 (0xFFFF) in the index value, not 0, so that
576 \ the caller knows that we tried to match, and failed.
577 found 1+ addr-selected_protocol set16 ;
578
579 \ Call policy handler to get cipher suite, hash function identifier and
580 \ certificate chain. Returned value is 0 (false) on failure.
581 cc: call-policy-handler ( -- bool ) {
582 int x;
583 br_ssl_server_choices choices;
584
585 x = (*CTX->policy_vtable)->choose(
586 CTX->policy_vtable, CTX, &choices);
587 ENG->session.cipher_suite = choices.cipher_suite;
588 CTX->sign_hash_id = choices.algo_id;
589 ENG->chain = choices.chain;
590 ENG->chain_len = choices.chain_len;
591 T0_PUSHi(-(x != 0));
592 }
593
594 \ Check for a remembered session.
595 cc: check-resume ( -- bool ) {
596 if (ENG->session.session_id_len == 32
597 && CTX->cache_vtable != NULL && (*CTX->cache_vtable)->load(
598 CTX->cache_vtable, CTX, &ENG->session))
599 {
600 T0_PUSHi(-1);
601 } else {
602 T0_PUSH(0);
603 }
604 }
605
606 \ Save the current session.
607 cc: save-session ( -- ) {
608 if (CTX->cache_vtable != NULL) {
609 (*CTX->cache_vtable)->save(
610 CTX->cache_vtable, CTX, &ENG->session);
611 }
612 }
613
614 \ Read and drop ClientHello. This is used when a client-triggered
615 \ renegotiation attempt is rejected.
616 : skip-ClientHello ( -- )
617 read-handshake-header-core
618 1 = ifnot ERR_UNEXPECTED fail then
619 dup skip-blob drop ;
620
621 \ Read ClientHello. If the session is resumed, then -1 is returned.
622 : read-ClientHello ( -- resume )
623 \ Get header, and check message type.
624 read-handshake-header 1 = ifnot ERR_UNEXPECTED fail then
625
626 \ Get maximum protocol version from client.
627 read16 dup { client-version-max } addr-client_max_version set16
628
629 \ Client random.
630 addr-client_random 32 read-blob
631
632 \ Client session ID.
633 read8 dup 32 > if ERR_OVERSIZED_ID fail then
634 dup addr-session_id_len set8
635 addr-session_id swap read-blob
636
637 \ Lookup session for resumption. We should do that here because
638 \ we need to verify that the remembered cipher suite is still
639 \ matched by this ClientHello.
640 check-resume { resume }
641
642 \ Cipher suites. We read all cipher suites from client, each time
643 \ matching against our own list. We accumulate suites in the
644 \ client_suites[] context buffer: we keep suites that are
645 \ supported by both the client and the server (so the list size
646 \ cannot exceed that of the server list), and we keep them in
647 \ either client or server preference order (depending on the
648 \ relevant flag).
649 \
650 \ We also need to identify the pseudo cipher suite for secure
651 \ renegotiation here.
652 read16 open-elt
653 0 { reneg-scsv }
654 0 { resume-suite }
655 addr-len-client_suites dup2 bzero
656 over + { css-off css-max }
657 begin
658 dup while
659 read16 dup { suite }
660
661 \ Check that when resuming a session, the requested
662 \ suite is still valid.
663 resume if
664 dup addr-cipher_suite get16 = if
665 -1 >resume-suite
666 then
667 then
668
669 \ Special handling for TLS_EMPTY_RENEGOTIATION_INFO_SCSV.
670 \ This fake cipher suite may occur only in the first
671 \ handshake.
672 dup 0x00FF = if
673 addr-reneg get8 if ERR_BAD_SECRENEG fail then
674 -1 >reneg-scsv
675 then
676
677 \ Special handling for TLS_FALLBACK_SCSV. If the client
678 \ maximum version is less than our own maximum version,
679 \ then this is an undue downgrade. We mark it by setting
680 \ the client max version to 0x10000.
681 dup 0x5600 = if
682 client-version-max addr-version_min get16 >=
683 client-version-max addr-version_max get16 < and if
684 -1 >client-version-max
685 then
686 then
687
688 \ Test whether the suite is supported by the server.
689 scan-suite dup 0< if
690 \ We do not support this cipher suite. Note
691 \ that this also covers the case of pseudo
692 \ cipher suites.
693 drop
694 else
695 \ If we use server order, then we place the
696 \ suite at the computed offset; otherwise, we
697 \ append it to the list at the current place.
698 0 flag? if
699 2 << addr-client_suites + suite swap set16
700 else
701 drop
702 \ We need to test for list length because
703 \ the client list may have duplicates,
704 \ that we do not filter. Duplicates are
705 \ invalid so this is not a problem if we
706 \ reject such clients.
707 css-off css-max >= if
708 ERR_BAD_HANDSHAKE fail
709 then
710 suite css-off set16
711 css-off 4 + >css-off
712 then
713 then
714 repeat
715 drop
716
717 \ Compression methods. We need method 0 (no compression).
718 0 { ok-compression }
719 read8 open-elt
720 begin dup while
721 read8 ifnot -1 >ok-compression then
722 repeat
723 close-elt
724
725 \ Set default values for parameters that may be affected by
726 \ extensions:
727 \ -- server name is empty
728 \ -- client is reputed to know RSA and ECDSA, both with SHA-1
729 \ -- the default elliptic curve is P-256 (secp256r1, id = 23)
730 0 addr-server_name set8
731 0x0404 addr-hashes set32
732 0x800000 addr-curves set32
733
734 \ Process extensions, if any.
735 dup if
736 read16 open-elt
737 begin dup while
738 read16 case
739 \ Server Name Indication.
740 0x0000 of
741 read-client-sni
742 endof
743 \ Max Frag Length.
744 0x0001 of
745 read-client-frag
746 endof
747 \ Secure Renegotiation.
748 0xFF01 of
749 read-client-reneg
750 endof
751 \ Signature Algorithms.
752 0x000D of
753 read-signatures
754 endof
755 \ Supported Curves.
756 0x000A of
757 read-supported-curves
758 endof
759 \ Supported Point Formats.
760 \ We only support "uncompressed", that all
761 \ implementations are supposed to support,
762 \ so we can simply ignore that extension.
763 \ 0x000B of
764 \ read-ignore-16
765 \ endof
766
767 \ ALPN
768 0x0010 of
769 read-ALPN-from-client
770 endof
771
772 \ Other extensions are ignored.
773 drop read-ignore-16 0
774 endcase
775 repeat
776 close-elt
777 then
778
779 \ Close message.
780 close-elt
781
782 \ Cancel session resumption if the cipher suite was not found.
783 resume resume-suite and >resume
784
785 \ Now check the received data. Since the client is expecting an
786 \ answer, we can send an appropriate fatal alert on any error.
787
788 \ Compute protocol version as the minimum of our maximum version,
789 \ and the maximum version sent by the client. If that is less than
790 \ 0x0300 (SSL-3.0), then fail. Otherwise, we may at least send an
791 \ alert with that version. We still reject versions lower than our
792 \ configured minimum.
793 \ As a special case, in case of undue downgrade, we send a specific
794 \ alert (see RFC 7507). Note that this case may happen only if
795 \ we would otherwise accept the client's version.
796 client-version-max 0< if
797 addr-client_max_version get16 addr-version_out set16
798 86 fail-alert
799 then
800 addr-version_max get16
801 dup client-version-max > if drop client-version-max then
802 dup 0x0300 < if ERR_BAD_VERSION fail then
803 client-version-max addr-version_min get16 < if
804 70 fail-alert
805 then
806 \ If resuming the session, then enforce the previously negotiated
807 \ version (if still possible).
808 resume if
809 addr-version get16 client-version-max <= if
810 drop addr-version get16
811 else
812 0 >resume
813 then
814 then
815 dup addr-version set16
816 dup addr-version_in set16
817 dup addr-version_out set16
818 0x0303 >= { can-tls12 }
819
820 \ If the client sent TLS_EMPTY_RENEGOTIATION_INFO_SCSV, then
821 \ we should mark the client as "supporting secure renegotiation".
822 reneg-scsv if 2 addr-reneg set8 then
823
824 \ If, at that point, the 'reneg' value is still 0, then the client
825 \ did not send the extension or the SCSV, so we have to assume
826 \ that secure renegotiation is not supported by that client.
827 addr-reneg get8 ifnot 1 addr-reneg set8 then
828
829 \ Check compression.
830 ok-compression ifnot 40 fail-alert then
831
832 \ Filter hash function support by what the server also supports.
833 \ If no common hash function remains with RSA and/or ECDSA, then
834 \ the corresponding ECDHE suites are not possible.
835 supported-hash-functions drop 257 * 0xFFFF0000 or
836 addr-hashes get32 and dup addr-hashes set32
837 \ In 'can-ecdhe', bit 12 is set if ECDHE_RSA is possible, bit 13 is
838 \ set if ECDHE_ECDSA is possible.
839 dup 0xFF and 0<> neg
840 swap 8 >> 0<> 2 and or 12 << { can-ecdhe }
841
842 \ Filter supported curves. If there is no common curve between
843 \ client and us, then ECDHE suites cannot be used. Note that we
844 \ may still allow ECDH, depending on the EC key handler.
845 addr-curves get32 supported-curves and dup addr-curves set32
846 ifnot 0 >can-ecdhe then
847
848 \ If resuming a session, then the next steps are not necessary;
849 \ we won't invoke the policy handler.
850 resume if -1 ret then
851
852 \ We are not resuming, so a new session ID should be generated.
853 \ We don't check that the new ID is distinct from the one sent
854 \ by the client because probability of such an event is 2^(-256),
855 \ i.e. much (much) lower than that of an undetected transmission
856 \ error or hardware miscomputation, and with similar consequences
857 \ (handshake simply fails).
858 addr-session_id 32 mkrand
859 32 addr-session_id_len set8
860
861 \ Translate common cipher suites, then squeeze out holes: there
862 \ may be holes because of the way we fill the list when the
863 \ server preference order is enforced, and also in case some
864 \ suites are filtered out. In particular:
865 \ -- ECDHE suites are removed if there is no common hash function
866 \ (for the relevant signature algorithm) or no common curve.
867 \ -- TLS-1.2-only suites are removed if the negociated version is
868 \ TLS-1.1 or lower.
869 addr-client_suites dup >css-off
870 begin dup css-max < while
871 dup get16 dup cipher-suite-to-elements
872 dup 12 >> dup 1 = swap 2 = or if
873 dup can-ecdhe and ifnot
874 2drop 0 dup
875 then
876 then
877 can-tls12 ifnot
878 \ Suites compatible with TLS-1.0 and TLS-1.1 are
879 \ exactly the ones that use HMAC/SHA-1.
880 dup 0xF0 and 0x20 <> if
881 2drop 0 dup
882 then
883 then
884 dup if
885 css-off 2+ set16 css-off set16
886 css-off 4 + >css-off
887 else
888 2drop
889 then
890 4 +
891 repeat
892 drop
893 css-off addr-client_suites - 2 >>
894 dup ifnot
895 \ No common cipher suite: handshake failure.
896 40 fail-alert
897 then
898 addr-client_suites_num set8
899
900 \ Check ALPN.
901 addr-selected_protocol get16 0xFFFF = if
902 3 flag? if 120 fail-alert then
903 0 addr-selected_protocol set16
904 then
905
906 \ Call policy handler to obtain the cipher suite and other
907 \ parameters.
908 call-policy-handler ifnot 40 fail-alert then
909
910 \ We are not resuming a session.
911 0 ;
912
913 \ Write ServerHello.
914 : write-ServerHello ( initial -- )
915 { initial }
916 \ Compute ServerHello length.
917 2 write8 70
918
919 \ Compute length of Secure Renegotiation extension.
920 addr-reneg get8 2 = if
921 initial if 5 else 29 then
922 else
923 0
924 then
925 { ext-reneg-len }
926
927 \ Compute length of Max Fragment Length extension.
928 addr-peer_log_max_frag_len get8 if 5 else 0 then
929 { ext-max-frag-len }
930
931 \ Compute length of ALPN extension. This also copy the
932 \ selected protocol name into the pad.
933 addr-selected_protocol get16 dup if 1- copy-protocol-name 7 + then
934 { ext-ALPN-len }
935
936 \ Adjust ServerHello length to account for the extensions.
937 ext-reneg-len ext-max-frag-len + ext-ALPN-len + dup if 2 + then +
938 write24
939
940 \ Protocol version
941 addr-version get16 write16
942
943 \ Server random
944 addr-server_random 4 bzero
945 addr-server_random 4 + 28 mkrand
946 addr-server_random 32 write-blob
947
948 \ Session ID
949 \ TODO: if we have no session cache at all, we might send here
950 \ an empty session ID. This would save a bit of network
951 \ bandwidth.
952 32 write8
953 addr-session_id 32 write-blob
954
955 \ Cipher suite
956 addr-cipher_suite get16 write16
957
958 \ Compression method
959 0 write8
960
961 \ Extensions
962 ext-reneg-len ext-max-frag-len + ext-ALPN-len + dup if
963 write16
964 ext-reneg-len dup if
965 0xFF01 write16
966 4 - dup write16
967 1- addr-saved_finished swap write-blob-head8
968 else
969 drop
970 then
971 ext-max-frag-len if
972 0x0001 write16
973 1 write16 addr-peer_log_max_frag_len get8 8 - write8
974 then
975 ext-ALPN-len dup if
976 \ Note: the selected protocol name was previously
977 \ copied into the pad.
978 0x0010 write16
979 4 - dup write16
980 2- dup write16
981 1- addr-pad swap write-blob-head8
982 else
983 drop
984 then
985 else
986 drop
987 then ;
988
989 \ Do the first part of ECDHE. Returned value is the computed signature
990 \ length, or a negative error code on error.
991 cc: do-ecdhe-part1 ( curve -- len ) {
992 int curve = T0_POPi();
993 T0_PUSHi(do_ecdhe_part1(CTX, curve));
994 }
995
996 \ Get index of first bit set to 1 (in low to high order).
997 : lowest-1 ( bits -- n )
998 dup ifnot drop -1 ret then
999 0 begin dup2 >> 1 and 0= while 1+ repeat
1000 swap drop ;
1001
1002 \ Write the Server Key Exchange message (if applicable).
1003 : write-ServerKeyExchange ( -- )
1004 addr-cipher_suite get16 use-ecdhe? ifnot ret then
1005
1006 \ We must select an appropriate curve among the curves that
1007 \ are supported both by us and the peer. Right now, we apply
1008 \ a fixed preference order: Curve25519, P-256, P-384, P-521,
1009 \ then the common curve with the lowest ID.
1010 \ (TODO: add some option to make that behaviour configurable.)
1011 \
1012 \ This loop always terminates because previous processing made
1013 \ sure that ECDHE suites are not selectable if there is no common
1014 \ curve.
1015 addr-curves get32
1016 dup 0x20000000 and if
1017 drop 29
1018 else
1019 dup 0x38000000 and dup if swap then
1020 drop lowest-1
1021 then
1022 { curve-id }
1023
1024 \ Compute the signed curve point to send.
1025 curve-id do-ecdhe-part1 dup 0< if neg fail then { sig-len }
1026
1027 \ If using TLS-1.2+, then the hash function and signature
1028 \ algorithm are explicitly encoded in the message.
1029 addr-version get16 0x0303 >= { tls1.2+ }
1030
1031 12 write8
1032 sig-len addr-ecdhe_point_len get8 + tls1.2+ 2 and + 6 + write24
1033
1034 \ Curve parameters: named curve with 16-bit ID.
1035 3 write8 curve-id write16
1036
1037 \ Public point.
1038 addr-ecdhe_point addr-ecdhe_point_len get8 write-blob-head8
1039
1040 \ If TLS-1.2+, write hash and signature identifiers.
1041 tls1.2+ if
1042 \ sign_hash_id contains either a hash identifier,
1043 \ or the complete 16-bit value to write.
1044 addr-sign_hash_id get16
1045 dup 0xFF00 < if
1046 write16
1047 else
1048 0xFF and write8
1049 \ 'use-rsa-ecdhe?' returns -1 for RSA, 0 for
1050 \ ECDSA. The byte on the wire shall be 1 for RSA,
1051 \ 3 for ECDSA.
1052 addr-cipher_suite get16 use-rsa-ecdhe? 1 << 3 + write8
1053 then
1054 then
1055
1056 \ Signature.
1057 sig-len write16
1058 addr-pad sig-len write-blob ;
1059
1060 \ Get length of the list of anchor names to send to the client. The length
1061 \ includes the per-name 2-byte header, but _not_ the 2-byte header for
1062 \ the list itself. If no client certificate is requested, then this
1063 \ returns 0.
1064 cc: ta-names-total-length ( -- len ) {
1065 size_t u, len;
1066
1067 len = 0;
1068 if (CTX->ta_names != NULL) {
1069 for (u = 0; u < CTX->num_tas; u ++) {
1070 len += CTX->ta_names[u].len + 2;
1071 }
1072 } else if (CTX->tas != NULL) {
1073 for (u = 0; u < CTX->num_tas; u ++) {
1074 len += CTX->tas[u].dn.len + 2;
1075 }
1076 }
1077 T0_PUSH(len);
1078 }
1079
1080 \ Compute length and optionally write the contents of the list of
1081 \ supported client authentication methods.
1082 : write-list-auth ( do_write -- len )
1083 0
1084 addr-cipher_suite get16 use-ecdh? if
1085 2+ over if 65 write8 66 write8 then
1086 then
1087 supports-rsa-sign? if 1+ over if 1 write8 then then
1088 supports-ecdsa? if 1+ over if 64 write8 then then
1089 swap drop ;
1090
1091 : write-signhash-inner2 ( dow algo hashes len id -- dow algo hashes len )
1092 { id }
1093 over 1 id << and ifnot ret then
1094 2+
1095 3 pick if id write8 2 pick write8 then ;
1096
1097 : write-signhash-inner1 ( dow algo hashes -- dow len )
1098 0
1099 4 write-signhash-inner2
1100 5 write-signhash-inner2
1101 6 write-signhash-inner2
1102 3 write-signhash-inner2
1103 2 write-signhash-inner2
1104 -rot 2drop ;
1105
1106 \ Compute length and optionally write the contents of the list of
1107 \ supported sign+hash algorithms.
1108 : write-list-signhash ( do_write -- len )
1109 0 { len }
1110 \ If supporting neither RSA nor ECDSA in the engine, then we
1111 \ will do only static ECDH, and thus we claim support for
1112 \ everything (for the X.509 validator).
1113 supports-rsa-sign? supports-ecdsa? or ifnot
1114 1 0x7C write-signhash-inner1 >len
1115 3 0x7C write-signhash-inner1 len +
1116 swap drop ret
1117 then
1118 supports-rsa-sign? if
1119 1 supported-hash-functions drop
1120 write-signhash-inner1 >len
1121 then
1122 supports-ecdsa? if
1123 3 supported-hash-functions drop
1124 write-signhash-inner1 len + >len
1125 then
1126 drop len ;
1127
1128 \ Initialise index for sending the list of anchor DN.
1129 cc: begin-ta-name-list ( -- ) {
1130 CTX->cur_dn_index = 0;
1131 }
1132
1133 \ Switch to next DN in the list. Returned value is the DN length, or -1
1134 \ if the end of the list was reached.
1135 cc: begin-ta-name ( -- len ) {
1136 const br_x500_name *dn;
1137 if (CTX->cur_dn_index >= CTX->num_tas) {
1138 T0_PUSHi(-1);
1139 } else {
1140 if (CTX->ta_names == NULL) {
1141 dn = &CTX->tas[CTX->cur_dn_index].dn;
1142 } else {
1143 dn = &CTX->ta_names[CTX->cur_dn_index];
1144 }
1145 CTX->cur_dn_index ++;
1146 CTX->cur_dn = dn->data;
1147 CTX->cur_dn_len = dn->len;
1148 T0_PUSH(CTX->cur_dn_len);
1149 }
1150 }
1151
1152 \ Copy a chunk of the current DN into the pad. Returned value is the
1153 \ chunk length; this is 0 when the end of the current DN is reached.
1154 cc: copy-dn-chunk ( -- len ) {
1155 size_t clen;
1156
1157 clen = CTX->cur_dn_len;
1158 if (clen > sizeof ENG->pad) {
1159 clen = sizeof ENG->pad;
1160 }
1161 memcpy(ENG->pad, CTX->cur_dn, clen);
1162 CTX->cur_dn += clen;
1163 CTX->cur_dn_len -= clen;
1164 T0_PUSH(clen);
1165 }
1166
1167 \ Write a CertificateRequest message.
1168 : write-CertificateRequest ( -- )
1169 \ The list of client authentication types includes:
1170 \ rsa_sign (1)
1171 \ ecdsa_sign (64)
1172 \ rsa_fixed_ecdh (65)
1173 \ ecdsa_fixed_ecdh (66)
1174 \ rsa_sign and ecdsa_sign require, respectively, RSA and ECDSA
1175 \ support. Static ECDH requires that the cipher suite is ECDH.
1176 \ When we ask for static ECDH, we always send both rsa_fixed_ecdh
1177 \ and ecdsa_fixed_ecdh because what matters there is what the
1178 \ X.509 engine may support, and we do not control that.
1179 \
1180 \ With TLS 1.2, we must also send a list of supported signature
1181 \ and hash algorithms. That list is supposed to qualify both
1182 \ the engine itself, and the X.509 validator, which are separate
1183 \ in BearSSL. There again, we use the engine capabilities in that
1184 \ list, and resort to a generic all-support list if only
1185 \ static ECDH is accepted.
1186 \
1187 \ (In practice, client implementations tend to have at most one
1188 \ or two certificates, and send the chain regardless of what
1189 \ algorithms are used in it.)
1190
1191 0 write-list-auth
1192 addr-version get16 0x0303 >= if
1193 2+ 0 write-list-signhash +
1194 then
1195 ta-names-total-length + 3 +
1196
1197 \ Message header
1198 13 write8 write24
1199
1200 \ List of authentication methods
1201 0 write-list-auth write8 1 write-list-auth drop
1202
1203 \ For TLS 1.2+, list of sign+hash
1204 addr-version get16 0x0303 >= if
1205 0 write-list-signhash write16 1 write-list-signhash drop
1206 then
1207
1208 \ Trust anchor names
1209 ta-names-total-length write16
1210 begin-ta-name-list
1211 begin
1212 begin-ta-name
1213 dup 0< if drop ret then write16
1214 begin copy-dn-chunk dup while
1215 addr-pad swap write-blob
1216 repeat
1217 drop
1218 again ;
1219
1220 \ Write the Server Hello Done message.
1221 : write-ServerHelloDone ( -- )
1222 14 write8 0 write24 ;
1223
1224 \ Perform RSA decryption of the client-sent pre-master secret. The value
1225 \ is in the pad, and its length is provided as parameter.
1226 cc: do-rsa-decrypt ( len prf_id -- ) {
1227 int prf_id = T0_POPi();
1228 size_t len = T0_POP();
1229 do_rsa_decrypt(CTX, prf_id, ENG->pad, len);
1230 }
1231
1232 \ Perform ECDH (not ECDHE). The point from the client is in the pad, and
1233 \ its length is provided as parameter.
1234 cc: do-ecdh ( len prf_id -- ) {
1235 int prf_id = T0_POPi();
1236 size_t len = T0_POP();
1237 do_ecdh(CTX, prf_id, ENG->pad, len);
1238 }
1239
1240 \ Do the second part of ECDHE.
1241 cc: do-ecdhe-part2 ( len prf_id -- ) {
1242 int prf_id = T0_POPi();
1243 size_t len = T0_POP();
1244 do_ecdhe_part2(CTX, prf_id, ENG->pad, len);
1245 }
1246
1247 \ Perform static ECDH. The point from the client is the public key
1248 \ extracted from its certificate.
1249 cc: do-static-ecdh ( prf_id -- ) {
1250 do_static_ecdh(CTX, T0_POP());
1251 }
1252
1253 \ Read a ClientKeyExchange header.
1254 : read-ClientKeyExchange-header ( -- len )
1255 read-handshake-header 16 = ifnot ERR_UNEXPECTED fail then ;
1256
1257 \ Read the Client Key Exchange contents (non-empty case).
1258 : read-ClientKeyExchange-contents ( lim -- )
1259 \ What we should get depends on the cipher suite.
1260 addr-cipher_suite get16 use-rsa-keyx? if
1261 \ RSA key exchange: we expect a RSA-encrypted value.
1262 read16
1263 dup 512 > if ERR_LIMIT_EXCEEDED fail then
1264 dup { enc-rsa-len }
1265 addr-pad swap read-blob
1266 enc-rsa-len addr-cipher_suite get16 prf-id do-rsa-decrypt
1267 then
1268 addr-cipher_suite get16 dup use-ecdhe? swap use-ecdh? { ecdhe ecdh }
1269 ecdh ecdhe or if
1270 \ ECDH or ECDHE key exchange: we expect an EC point.
1271 read8 dup { ec-point-len }
1272 addr-pad swap read-blob
1273 ec-point-len addr-cipher_suite get16 prf-id
1274 ecdhe if do-ecdhe-part2 else do-ecdh then
1275 then
1276 close-elt ;
1277
1278 \ Read the Client Key Exchange (normal case).
1279 : read-ClientKeyExchange ( -- )
1280 read-ClientKeyExchange-header
1281 read-ClientKeyExchange-contents ;
1282
1283 \ Obtain all possible hash values for handshake messages so far. This
1284 \ is done because we need the hash value for the CertificateVerify
1285 \ _before_ knowing which hash function will actually be used, as this
1286 \ information is obtained from decoding the message header itself.
1287 \ All hash values are stored in the pad (208 bytes in total).
1288 cc: compute-hash-CV ( -- ) {
1289 int i;
1290
1291 for (i = 1; i <= 6; i ++) {
1292 br_multihash_out(&ENG->mhash, i,
1293 ENG->pad + HASH_PAD_OFF[i - 1]);
1294 }
1295 }
1296
1297 \ Copy the proper hash value from the pad into the dedicated buffer.
1298 \ Returned value is true (-1) on success, false (0) on error (error
1299 \ being an unimplemented hash function). The id has already been verified
1300 \ to be either 0 (for MD5+SHA-1) or one of the SHA-* functions.
1301 cc: copy-hash-CV ( hash_id -- bool ) {
1302 int id = T0_POP();
1303 size_t off, len;
1304
1305 if (id == 0) {
1306 off = 0;
1307 len = 36;
1308 } else {
1309 if (br_multihash_getimpl(&ENG->mhash, id) == 0) {
1310 T0_PUSH(0);
1311 T0_RET();
1312 }
1313 off = HASH_PAD_OFF[id - 1];
1314 len = HASH_PAD_OFF[id] - off;
1315 }
1316 memcpy(CTX->hash_CV, ENG->pad + off, len);
1317 CTX->hash_CV_len = len;
1318 CTX->hash_CV_id = id;
1319 T0_PUSHi(-1);
1320 }
1321
1322 \ Verify signature in CertificateVerify. Output is 0 on success, or a
1323 \ non-zero error code.
1324 cc: verify-CV-sig ( sig-len -- err ) {
1325 int err;
1326
1327 err = verify_CV_sig(CTX, T0_POP());
1328 T0_PUSHi(err);
1329 }
1330
1331 \ Process static ECDH.
1332 : process-static-ECDH ( ktu -- )
1333 \ Static ECDH is allowed only if the cipher suite uses ECDH, and
1334 \ the client's public key has type EC and allows key exchange.
1335 \ BR_KEYTYPE_KEYX is 0x10, and BR_KEYTYPE_EC is 2.
1336 0x1F and 0x12 = ifnot ERR_WRONG_KEY_USAGE fail then
1337 addr-cipher_suite get16
1338 dup use-ecdh? ifnot ERR_UNEXPECTED fail then
1339 prf-id
1340 do-static-ecdh ;
1341
1342 \ Read CertificateVerify header.
1343 : read-CertificateVerify-header ( -- lim )
1344 compute-hash-CV
1345 read-handshake-header 15 = ifnot ERR_UNEXPECTED fail then ;
1346
1347 \ Read CertificateVerify. The client key type + usage is expected on the
1348 \ stack.
1349 : read-CertificateVerify ( ktu -- )
1350 \ Check that the key allows for signatures.
1351 dup 0x20 and ifnot ERR_WRONG_KEY_USAGE fail then
1352 0x0F and { key-type }
1353
1354 \ Get header.
1355 read-CertificateVerify-header
1356
1357 \ With TLS 1.2+, there is an explicit hash + signature indication,
1358 \ which must be compatible with the key type.
1359 addr-version get16 0x0303 >= if
1360 \ Get hash function, then signature algorithm. The
1361 \ signature algorithm is 1 (RSA) or 3 (ECDSA) while our
1362 \ symbolic constants for key types are 1 (RSA) or 2 (EC).
1363 read16
1364 dup 0xFF and 1+ 1 >> key-type = ifnot
1365 ERR_BAD_SIGNATURE fail
1366 then
1367 8 >>
1368
1369 \ We support only SHA-1, SHA-224, SHA-256, SHA-384
1370 \ and SHA-512. We explicitly reject MD5.
1371 dup 2 < over 6 > or if ERR_INVALID_ALGORITHM fail then
1372 else
1373 \ With TLS 1.0 and 1.1, hash is MD5+SHA-1 (0) for RSA,
1374 \ SHA-1 (2) for ECDSA.
1375 key-type 0x01 = if 0 else 2 then
1376 then
1377 copy-hash-CV ifnot ERR_INVALID_ALGORITHM fail then
1378
1379 \ Read signature.
1380 read16 dup { sig-len }
1381 dup 512 > if ERR_LIMIT_EXCEEDED fail then
1382 addr-pad swap read-blob
1383 sig-len verify-CV-sig
1384 dup if fail then drop
1385
1386 close-elt ;
1387
1388 \ Send a HelloRequest.
1389 : send-HelloRequest ( -- )
1390 flush-record
1391 begin can-output? not while wait-co drop repeat
1392 22 addr-record_type_out set8
1393 0 write8 0 write24 flush-record
1394 23 addr-record_type_out set8 ;
1395
1396 \ Make a handshake.
1397 : do-handshake ( initial -- )
1398 0 addr-application_data set8
1399 22 addr-record_type_out set8
1400 0 addr-selected_protocol set16
1401 multihash-init
1402 read-ClientHello
1403 more-incoming-bytes? if ERR_UNEXPECTED fail then
1404 if
1405 \ Session resumption
1406 write-ServerHello
1407 0 write-CCS-Finished
1408 0 read-CCS-Finished
1409 else
1410 \ Not a session resumption
1411 write-ServerHello
1412 write-Certificate drop
1413 write-ServerKeyExchange
1414 ta-names-total-length if
1415 write-CertificateRequest
1416 then
1417 write-ServerHelloDone
1418 flush-record
1419
1420 \ If we sent a CertificateRequest then we expect a
1421 \ Certificate message.
1422 ta-names-total-length if
1423 \ Read client certificate.
1424 0 read-Certificate
1425
1426 choice
1427 dup 0< uf
1428 \ Client certificate validation failed.
1429 2 flag? ifnot neg fail then
1430 drop
1431 read-ClientKeyExchange
1432 read-CertificateVerify-header
1433 dup skip-blob drop
1434 enduf
1435 dup 0= uf
1436 \ Client sent no certificate at all.
1437 drop
1438 2 flag? ifnot
1439 ERR_NO_CLIENT_AUTH fail
1440 then
1441 read-ClientKeyExchange
1442 enduf
1443
1444 \ Client certificate was validated.
1445 read-ClientKeyExchange-header
1446 dup ifnot
1447 \ Empty ClientKeyExchange.
1448 drop
1449 process-static-ECDH
1450 else
1451 read-ClientKeyExchange-contents
1452 read-CertificateVerify
1453 then
1454 endchoice
1455 else
1456 \ No client certificate request, we just expect
1457 \ a non-empty ClientKeyExchange.
1458 read-ClientKeyExchange
1459 then
1460 0 read-CCS-Finished
1461 0 write-CCS-Finished
1462 save-session
1463 then
1464 1 addr-application_data set8
1465 23 addr-record_type_out set8 ;
1466
1467 \ Entry point.
1468 : main ( -- ! )
1469 \ Perform initial handshake.
1470 -1 do-handshake
1471
1472 begin
1473 \ Wait for further invocation. At that point, we should
1474 \ get either an explicit call for renegotiation, or
1475 \ an incoming ClientHello handshake message.
1476 wait-co
1477 dup 0x07 and case
1478 0x00 of
1479 0x10 and if
1480 \ The best we can do is ask for a
1481 \ renegotiation, then wait for it
1482 \ to happen.
1483 0 addr-application_data set8
1484 send-HelloRequest
1485 then
1486 endof
1487 0x01 of
1488 \ Reject renegotiations if the peer does not
1489 \ support secure renegotiation, or if the
1490 \ "no renegotiation" flag is set.
1491 drop
1492 addr-reneg get8 1 = 1 flag? or if
1493 skip-ClientHello
1494 flush-record
1495 begin can-output? not while
1496 wait-co drop
1497 repeat
1498 100 send-warning
1499 \ Put back connection in "application
1500 \ data" state: it's not dead yet.
1501 1 addr-application_data set8
1502 23 addr-record_type_out set8
1503 else
1504 0 do-handshake
1505 then
1506 endof
1507 ERR_UNEXPECTED fail
1508 endcase
1509 again
1510 ;