New basic implementation of Curve25519 (generic i15 code, experimental).
[BearSSL] / test / test_math.c
1 /*
2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #include <stdio.h>
26 #include <stdlib.h>
27 #include <string.h>
28 #include <stdarg.h>
29 #include <time.h>
30
31 #include <gmp.h>
32
33 #include "bearssl.h"
34 #include "inner.h"
35
36 /*
37 * Pointers to implementations.
38 */
39 typedef struct {
40 uint32_t word_size;
41 void (*zero)(uint32_t *x, uint32_t bit_len);
42 void (*decode)(uint32_t *x, const void *src, size_t len);
43 uint32_t (*decode_mod)(uint32_t *x,
44 const void *src, size_t len, const uint32_t *m);
45 void (*reduce)(uint32_t *x, const uint32_t *a, const uint32_t *m);
46 void (*decode_reduce)(uint32_t *x,
47 const void *src, size_t len, const uint32_t *m);
48 void (*encode)(void *dst, size_t len, const uint32_t *x);
49 uint32_t (*add)(uint32_t *a, const uint32_t *b, uint32_t ctl);
50 uint32_t (*sub)(uint32_t *a, const uint32_t *b, uint32_t ctl);
51 uint32_t (*ninv)(uint32_t x);
52 void (*montymul)(uint32_t *d, const uint32_t *x, const uint32_t *y,
53 const uint32_t *m, uint32_t m0i);
54 void (*to_monty)(uint32_t *x, const uint32_t *m);
55 void (*from_monty)(uint32_t *x, const uint32_t *m, uint32_t m0i);
56 void (*modpow)(uint32_t *x, const unsigned char *e, size_t elen,
57 const uint32_t *m, uint32_t m0i, uint32_t *t1, uint32_t *t2);
58 } int_impl;
59
60 static const int_impl i31_impl = {
61 31,
62 &br_i31_zero,
63 &br_i31_decode,
64 &br_i31_decode_mod,
65 &br_i31_reduce,
66 &br_i31_decode_reduce,
67 &br_i31_encode,
68 &br_i31_add,
69 &br_i31_sub,
70 &br_i31_ninv31,
71 &br_i31_montymul,
72 &br_i31_to_monty,
73 &br_i31_from_monty,
74 &br_i31_modpow
75 };
76 static const int_impl i32_impl = {
77 32,
78 &br_i32_zero,
79 &br_i32_decode,
80 &br_i32_decode_mod,
81 &br_i32_reduce,
82 &br_i32_decode_reduce,
83 &br_i32_encode,
84 &br_i32_add,
85 &br_i32_sub,
86 &br_i32_ninv32,
87 &br_i32_montymul,
88 &br_i32_to_monty,
89 &br_i32_from_monty,
90 &br_i32_modpow
91 };
92
93 static const int_impl *impl;
94
95 static gmp_randstate_t RNG;
96
97 /*
98 * Get a random prime of length 'size' bits. This function also guarantees
99 * that x-1 is not a multiple of 65537.
100 */
101 static void
102 rand_prime(mpz_t x, int size)
103 {
104 for (;;) {
105 mpz_urandomb(x, RNG, size - 1);
106 mpz_setbit(x, 0);
107 mpz_setbit(x, size - 1);
108 if (mpz_probab_prime_p(x, 50)) {
109 mpz_sub_ui(x, x, 1);
110 if (mpz_divisible_ui_p(x, 65537)) {
111 continue;
112 }
113 mpz_add_ui(x, x, 1);
114 return;
115 }
116 }
117 }
118
119 /*
120 * Print out a GMP integer (for debug).
121 */
122 static void
123 print_z(mpz_t z)
124 {
125 unsigned char zb[1000];
126 size_t zlen, k;
127
128 mpz_export(zb, &zlen, 1, 1, 0, 0, z);
129 if (zlen == 0) {
130 printf(" 00");
131 return;
132 }
133 if ((zlen & 3) != 0) {
134 k = 4 - (zlen & 3);
135 memmove(zb + k, zb, zlen);
136 memset(zb, 0, k);
137 zlen += k;
138 }
139 for (k = 0; k < zlen; k += 4) {
140 printf(" %02X%02X%02X%02X",
141 zb[k], zb[k + 1], zb[k + 2], zb[k + 3]);
142 }
143 }
144
145 /*
146 * Print out an i31 or i32 integer (for debug).
147 */
148 static void
149 print_u(uint32_t *x)
150 {
151 size_t k;
152
153 if (x[0] == 0) {
154 printf(" 00000000 (0, 0)");
155 return;
156 }
157 for (k = (x[0] + 31) >> 5; k > 0; k --) {
158 printf(" %08lX", (unsigned long)x[k]);
159 }
160 printf(" (%u, %u)", (unsigned)(x[0] >> 5), (unsigned)(x[0] & 31));
161 }
162
163 /*
164 * Check that an i31/i32 number and a GMP number are equal.
165 */
166 static void
167 check_eqz(uint32_t *x, mpz_t z)
168 {
169 unsigned char xb[1000];
170 unsigned char zb[1000];
171 size_t xlen, zlen;
172 int good;
173
174 xlen = ((x[0] + 31) & ~(uint32_t)31) >> 3;
175 impl->encode(xb, xlen, x);
176 mpz_export(zb, &zlen, 1, 1, 0, 0, z);
177 good = 1;
178 if (xlen < zlen) {
179 good = 0;
180 } else if (xlen > zlen) {
181 size_t u;
182
183 for (u = xlen; u > zlen; u --) {
184 if (xb[xlen - u] != 0) {
185 good = 0;
186 break;
187 }
188 }
189 }
190 good = good && memcmp(xb + xlen - zlen, zb, zlen) == 0;
191 if (!good) {
192 size_t u;
193
194 printf("Mismatch:\n");
195 printf(" x = ");
196 print_u(x);
197 printf("\n");
198 printf(" ex = ");
199 for (u = 0; u < xlen; u ++) {
200 printf("%02X", xb[u]);
201 }
202 printf("\n");
203 printf(" z = ");
204 print_z(z);
205 printf("\n");
206 exit(EXIT_FAILURE);
207 }
208 }
209
210 /* obsolete
211 static void
212 mp_to_br(uint32_t *mx, uint32_t x_bitlen, mpz_t x)
213 {
214 uint32_t x_ebitlen;
215 size_t xlen;
216
217 if (mpz_sizeinbase(x, 2) > x_bitlen) {
218 abort();
219 }
220 x_ebitlen = ((x_bitlen / 31) << 5) + (x_bitlen % 31);
221 br_i31_zero(mx, x_ebitlen);
222 mpz_export(mx + 1, &xlen, -1, sizeof *mx, 0, 1, x);
223 }
224 */
225
226 static void
227 test_modint(void)
228 {
229 int i, j, k;
230 mpz_t p, a, b, v, t1;
231
232 printf("Test modular integers: ");
233 fflush(stdout);
234
235 gmp_randinit_mt(RNG);
236 mpz_init(p);
237 mpz_init(a);
238 mpz_init(b);
239 mpz_init(v);
240 mpz_init(t1);
241 mpz_set_ui(t1, (unsigned long)time(NULL));
242 gmp_randseed(RNG, t1);
243 for (k = 2; k <= 128; k ++) {
244 for (i = 0; i < 10; i ++) {
245 unsigned char ep[100], ea[100], eb[100], ev[100];
246 size_t plen, alen, blen, vlen;
247 uint32_t mp[40], ma[40], mb[40], mv[60], mx[100];
248 uint32_t mt1[40], mt2[40], mt3[40];
249 uint32_t ctl;
250 uint32_t mp0i;
251
252 rand_prime(p, k);
253 mpz_urandomm(a, RNG, p);
254 mpz_urandomm(b, RNG, p);
255 mpz_urandomb(v, RNG, k + 60);
256 if (mpz_sgn(b) == 0) {
257 mpz_set_ui(b, 1);
258 }
259 mpz_export(ep, &plen, 1, 1, 0, 0, p);
260 mpz_export(ea, &alen, 1, 1, 0, 0, a);
261 mpz_export(eb, &blen, 1, 1, 0, 0, b);
262 mpz_export(ev, &vlen, 1, 1, 0, 0, v);
263
264 impl->decode(mp, ep, plen);
265 if (impl->decode_mod(ma, ea, alen, mp) != 1) {
266 printf("Decode error\n");
267 printf(" ea = ");
268 print_z(a);
269 printf("\n");
270 printf(" p = ");
271 print_u(mp);
272 printf("\n");
273 exit(EXIT_FAILURE);
274 }
275 mp0i = impl->ninv(mp[1]);
276 if (impl->decode_mod(mb, eb, blen, mp) != 1) {
277 printf("Decode error\n");
278 printf(" eb = ");
279 print_z(b);
280 printf("\n");
281 printf(" p = ");
282 print_u(mp);
283 printf("\n");
284 exit(EXIT_FAILURE);
285 }
286 impl->decode(mv, ev, vlen);
287 check_eqz(mp, p);
288 check_eqz(ma, a);
289 check_eqz(mb, b);
290 check_eqz(mv, v);
291
292 impl->decode_mod(ma, ea, alen, mp);
293 impl->decode_mod(mb, eb, blen, mp);
294 ctl = impl->add(ma, mb, 1);
295 ctl |= impl->sub(ma, mp, 0) ^ (uint32_t)1;
296 impl->sub(ma, mp, ctl);
297 mpz_add(t1, a, b);
298 mpz_mod(t1, t1, p);
299 check_eqz(ma, t1);
300
301 impl->decode_mod(ma, ea, alen, mp);
302 impl->decode_mod(mb, eb, blen, mp);
303 impl->add(ma, mp, impl->sub(ma, mb, 1));
304 mpz_sub(t1, a, b);
305 mpz_mod(t1, t1, p);
306 check_eqz(ma, t1);
307
308 impl->decode_reduce(ma, ev, vlen, mp);
309 mpz_mod(t1, v, p);
310 check_eqz(ma, t1);
311
312 impl->decode(mv, ev, vlen);
313 impl->reduce(ma, mv, mp);
314 mpz_mod(t1, v, p);
315 check_eqz(ma, t1);
316
317 impl->decode_mod(ma, ea, alen, mp);
318 impl->to_monty(ma, mp);
319 mpz_mul_2exp(t1, a, ((k + impl->word_size - 1)
320 / impl->word_size) * impl->word_size);
321 mpz_mod(t1, t1, p);
322 check_eqz(ma, t1);
323 impl->from_monty(ma, mp, mp0i);
324 check_eqz(ma, a);
325
326 impl->decode_mod(ma, ea, alen, mp);
327 impl->decode_mod(mb, eb, blen, mp);
328 impl->to_monty(ma, mp);
329 impl->montymul(mt1, ma, mb, mp, mp0i);
330 mpz_mul(t1, a, b);
331 mpz_mod(t1, t1, p);
332 check_eqz(mt1, t1);
333
334 impl->decode_mod(ma, ea, alen, mp);
335 impl->modpow(ma, ev, vlen, mp, mp0i, mt1, mt2);
336 mpz_powm(t1, a, v, p);
337 check_eqz(ma, t1);
338
339 /*
340 br_modint_decode(ma, mp, ea, alen);
341 br_modint_decode(mb, mp, eb, blen);
342 if (!br_modint_div(ma, mb, mp, mt1, mt2, mt3)) {
343 fprintf(stderr, "division failed\n");
344 exit(EXIT_FAILURE);
345 }
346 mpz_sub_ui(t1, p, 2);
347 mpz_powm(t1, b, t1, p);
348 mpz_mul(t1, a, t1);
349 mpz_mod(t1, t1, p);
350 check_eqz(ma, t1);
351
352 br_modint_decode(ma, mp, ea, alen);
353 br_modint_decode(mb, mp, eb, blen);
354 for (j = 0; j <= (2 * k + 5); j ++) {
355 br_int_add(mx, j, ma, mb);
356 mpz_add(t1, a, b);
357 mpz_tdiv_r_2exp(t1, t1, j);
358 check_eqz(mx, t1);
359
360 br_int_mul(mx, j, ma, mb);
361 mpz_mul(t1, a, b);
362 mpz_tdiv_r_2exp(t1, t1, j);
363 check_eqz(mx, t1);
364 }
365 */
366 }
367 printf(".");
368 fflush(stdout);
369 }
370 mpz_clear(p);
371 mpz_clear(a);
372 mpz_clear(b);
373 mpz_clear(v);
374 mpz_clear(t1);
375
376 printf(" done.\n");
377 fflush(stdout);
378 }
379
380 #if 0
381 static void
382 test_RSA_core(void)
383 {
384 int i, j, k;
385 mpz_t n, e, d, p, q, dp, dq, iq, t1, t2, phi;
386
387 printf("Test RSA core: ");
388 fflush(stdout);
389
390 gmp_randinit_mt(RNG);
391 mpz_init(n);
392 mpz_init(e);
393 mpz_init(d);
394 mpz_init(p);
395 mpz_init(q);
396 mpz_init(dp);
397 mpz_init(dq);
398 mpz_init(iq);
399 mpz_init(t1);
400 mpz_init(t2);
401 mpz_init(phi);
402 mpz_set_ui(t1, (unsigned long)time(NULL));
403 gmp_randseed(RNG, t1);
404
405 /*
406 * To test corner cases, we want to try RSA keys such that the
407 * lengths of both factors can be arbitrary modulo 2^32. Factors
408 * p and q need not be of the same length; p can be greater than
409 * q and q can be greater than p.
410 *
411 * To keep computation time reasonable, we use p and q factors of
412 * less than 128 bits; this is way too small for secure RSA,
413 * but enough to exercise all code paths (since we work only with
414 * 32-bit words).
415 */
416 for (i = 64; i <= 96; i ++) {
417 rand_prime(p, i);
418 for (j = i - 33; j <= i + 33; j ++) {
419 uint32_t mp[40], mq[40], mdp[40], mdq[40], miq[40];
420
421 /*
422 * Generate a RSA key pair, with p of length i bits,
423 * and q of length j bits.
424 */
425 do {
426 rand_prime(q, j);
427 } while (mpz_cmp(p, q) == 0);
428 mpz_mul(n, p, q);
429 mpz_set_ui(e, 65537);
430 mpz_sub_ui(t1, p, 1);
431 mpz_sub_ui(t2, q, 1);
432 mpz_mul(phi, t1, t2);
433 mpz_invert(d, e, phi);
434 mpz_mod(dp, d, t1);
435 mpz_mod(dq, d, t2);
436 mpz_invert(iq, q, p);
437
438 /*
439 * Convert the key pair elements to BearSSL arrays.
440 */
441 mp_to_br(mp, mpz_sizeinbase(p, 2), p);
442 mp_to_br(mq, mpz_sizeinbase(q, 2), q);
443 mp_to_br(mdp, mpz_sizeinbase(dp, 2), dp);
444 mp_to_br(mdq, mpz_sizeinbase(dq, 2), dq);
445 mp_to_br(miq, mp[0], iq);
446
447 /*
448 * Compute and check ten public/private operations.
449 */
450 for (k = 0; k < 10; k ++) {
451 uint32_t mx[40];
452
453 mpz_urandomm(t1, RNG, n);
454 mpz_powm(t2, t1, e, n);
455 mp_to_br(mx, mpz_sizeinbase(n, 2), t2);
456 br_rsa_private_core(mx, mp, mq, mdp, mdq, miq);
457 check_eqz(mx, t1);
458 }
459 }
460 printf(".");
461 fflush(stdout);
462 }
463
464 printf(" done.\n");
465 fflush(stdout);
466 }
467 #endif
468
469 int
470 main(void)
471 {
472 printf("===== i32 ======\n");
473 impl = &i32_impl;
474 test_modint();
475 printf("===== i31 ======\n");
476 impl = &i31_impl;
477 test_modint();
478 /*
479 test_RSA_core();
480 */
481 return 0;
482 }