07e1d0a478e801a91580658918130fb8b595e407
[BearSSL] / src / inner.h
1 /*
2 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining
5 * a copy of this software and associated documentation files (the
6 * "Software"), to deal in the Software without restriction, including
7 * without limitation the rights to use, copy, modify, merge, publish,
8 * distribute, sublicense, and/or sell copies of the Software, and to
9 * permit persons to whom the Software is furnished to do so, subject to
10 * the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be
13 * included in all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
16 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
17 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
18 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
19 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
20 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
21 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25 #ifndef INNER_H__
26 #define INNER_H__
27
28 #include <string.h>
29 #include <limits.h>
30
31 #include "config.h"
32 #include "bearssl.h"
33
34 /*
35 * On MSVC, disable the warning about applying unary minus on an
36 * unsigned type: it is standard, we do it all the time, and for
37 * good reasons.
38 */
39 #if _MSC_VER
40 #pragma warning( disable : 4146 )
41 #endif
42
43 /*
44 * Maximum size for a RSA modulus (in bits). Allocated stack buffers
45 * depend on that size, so this value should be kept small. Currently,
46 * 2048-bit RSA keys offer adequate security, and should still do so for
47 * the next few decades; however, a number of widespread PKI have
48 * already set their root keys to RSA-4096, so we should be able to
49 * process such keys.
50 *
51 * This value MUST be a multiple of 64. This value MUST NOT exceed 47666
52 * (some computations in RSA key generation rely on the factor size being
53 * no more than 23833 bits). RSA key sizes beyond 3072 bits don't make a
54 * lot of sense anyway.
55 */
56 #define BR_MAX_RSA_SIZE 4096
57
58 /*
59 * Minimum size for a RSA modulus (in bits); this value is used only to
60 * filter out invalid parameters for key pair generation. Normally,
61 * applications should not use RSA keys smaller than 2048 bits; but some
62 * specific cases might need shorter keys, for legacy or research
63 * purposes.
64 */
65 #define BR_MIN_RSA_SIZE 512
66
67 /*
68 * Maximum size for a RSA factor (in bits). This is for RSA private-key
69 * operations. Default is to support factors up to a bit more than half
70 * the maximum modulus size.
71 *
72 * This value MUST be a multiple of 32.
73 */
74 #define BR_MAX_RSA_FACTOR ((BR_MAX_RSA_SIZE + 64) >> 1)
75
76 /*
77 * Maximum size for an EC curve (modulus or order), in bits. Size of
78 * stack buffers depends on that parameter. This size MUST be a multiple
79 * of 8 (so that decoding an integer with that many bytes does not
80 * overflow).
81 */
82 #define BR_MAX_EC_SIZE 528
83
84 /*
85 * Some macros to recognize the current architecture. Right now, we are
86 * interested into automatically recognizing architecture with efficient
87 * 64-bit types so that we may automatically use implementations that
88 * use 64-bit registers in that case. Future versions may detect, e.g.,
89 * availability of SSE2 intrinsics.
90 *
91 * If 'unsigned long' is a 64-bit type, then we assume that 64-bit types
92 * are efficient. Otherwise, we rely on macros that depend on compiler,
93 * OS and architecture. In any case, failure to detect the architecture
94 * as 64-bit means that the 32-bit code will be used, and that code
95 * works also on 64-bit architectures (the 64-bit code may simply be
96 * more efficient).
97 *
98 * The test on 'unsigned long' should already catch most cases, the one
99 * notable exception being Windows code where 'unsigned long' is kept to
100 * 32-bit for compatibility with all the legacy code that liberally uses
101 * the 'DWORD' type for 32-bit values.
102 *
103 * Macro names are taken from: http://nadeausoftware.com/articles/2012/02/c_c_tip_how_detect_processor_type_using_compiler_predefined_macros
104 */
105 #ifndef BR_64
106 #if ((ULONG_MAX >> 31) >> 31) == 3
107 #define BR_64 1
108 #elif defined(__ia64) || defined(__itanium__) || defined(_M_IA64)
109 #define BR_64 1
110 #elif defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) \
111 || defined(__64BIT__) || defined(_LP64) || defined(__LP64__)
112 #define BR_64 1
113 #elif defined(__sparc64__)
114 #define BR_64 1
115 #elif defined(__x86_64__) || defined(_M_X64)
116 #define BR_64 1
117 #elif defined(__aarch64__) || defined(_M_ARM64)
118 #define BR_64 1
119 #elif defined(__mips64)
120 #define BR_64 1
121 #endif
122 #endif
123
124 /*
125 * Set BR_LOMUL on platforms where it makes sense.
126 */
127 #ifndef BR_LOMUL
128 #if BR_ARMEL_CORTEXM_GCC
129 #define BR_LOMUL 1
130 #endif
131 #endif
132
133 /*
134 * Architecture detection.
135 */
136 #ifndef BR_i386
137 #if __i386__ || _M_IX86
138 #define BR_i386 1
139 #endif
140 #endif
141
142 #ifndef BR_amd64
143 #if __x86_64__ || _M_X64
144 #define BR_amd64 1
145 #endif
146 #endif
147
148 /*
149 * Compiler brand and version.
150 *
151 * Implementations that use intrinsics need to detect the compiler type
152 * and version because some specific actions may be needed to activate
153 * the corresponding opcodes, both for header inclusion, and when using
154 * them in a function.
155 *
156 * BR_GCC, BR_CLANG and BR_MSC will be set to 1 for, respectively, GCC,
157 * Clang and MS Visual C. For each of them, sub-macros will be defined
158 * for versions; each sub-macro is set whenever the compiler version is
159 * at least as recent as the one corresponding to the macro.
160 */
161
162 /*
163 * GCC thresholds are on versions 4.4 to 4.9 and 5.0.
164 */
165 #ifndef BR_GCC
166 #if __GNUC__ && !__clang__
167 #define BR_GCC 1
168
169 #if __GNUC__ > 4
170 #define BR_GCC_5_0 1
171 #elif __GNUC__ == 4 && __GNUC_MINOR__ >= 9
172 #define BR_GCC_4_9 1
173 #elif __GNUC__ == 4 && __GNUC_MINOR__ >= 8
174 #define BR_GCC_4_8 1
175 #elif __GNUC__ == 4 && __GNUC_MINOR__ >= 7
176 #define BR_GCC_4_7 1
177 #elif __GNUC__ == 4 && __GNUC_MINOR__ >= 6
178 #define BR_GCC_4_6 1
179 #elif __GNUC__ == 4 && __GNUC_MINOR__ >= 5
180 #define BR_GCC_4_5 1
181 #elif __GNUC__ == 4 && __GNUC_MINOR__ >= 4
182 #define BR_GCC_4_4 1
183 #endif
184
185 #if BR_GCC_5_0
186 #define BR_GCC_4_9 1
187 #endif
188 #if BR_GCC_4_9
189 #define BR_GCC_4_8 1
190 #endif
191 #if BR_GCC_4_8
192 #define BR_GCC_4_7 1
193 #endif
194 #if BR_GCC_4_7
195 #define BR_GCC_4_6 1
196 #endif
197 #if BR_GCC_4_6
198 #define BR_GCC_4_5 1
199 #endif
200 #if BR_GCC_4_5
201 #define BR_GCC_4_4 1
202 #endif
203
204 #endif
205 #endif
206
207 /*
208 * Clang thresholds are on versions 3.7.0 and 3.8.0.
209 */
210 #ifndef BR_CLANG
211 #if __clang__
212 #define BR_CLANG 1
213
214 #if __clang_major__ > 3 || (__clang_major__ == 3 && __clang_minor__ >= 8)
215 #define BR_CLANG_3_8 1
216 #elif __clang_major__ == 3 && __clang_minor__ >= 7
217 #define BR_CLANG_3_7 1
218 #endif
219
220 #if BR_CLANG_3_8
221 #define BR_CLANG_3_7 1
222 #endif
223
224 #endif
225 #endif
226
227 /*
228 * MS Visual C thresholds are on Visual Studio 2005 to 2015.
229 */
230 #ifndef BR_MSC
231 #if _MSC_VER
232 #define BR_MSC 1
233
234 #if _MSC_VER >= 1900
235 #define BR_MSC_2015 1
236 #elif _MSC_VER >= 1800
237 #define BR_MSC_2013 1
238 #elif _MSC_VER >= 1700
239 #define BR_MSC_2012 1
240 #elif _MSC_VER >= 1600
241 #define BR_MSC_2010 1
242 #elif _MSC_VER >= 1500
243 #define BR_MSC_2008 1
244 #elif _MSC_VER >= 1400
245 #define BR_MSC_2005 1
246 #endif
247
248 #if BR_MSC_2015
249 #define BR_MSC_2013 1
250 #endif
251 #if BR_MSC_2013
252 #define BR_MSC_2012 1
253 #endif
254 #if BR_MSC_2012
255 #define BR_MSC_2010 1
256 #endif
257 #if BR_MSC_2010
258 #define BR_MSC_2008 1
259 #endif
260 #if BR_MSC_2008
261 #define BR_MSC_2005 1
262 #endif
263
264 #endif
265 #endif
266
267 /*
268 * GCC 4.4+ and Clang 3.7+ allow tagging specific functions with a
269 * 'target' attribute that activates support for specific opcodes.
270 */
271 #if BR_GCC_4_4 || BR_CLANG_3_7
272 #define BR_TARGET(x) __attribute__((target(x)))
273 #else
274 #define BR_TARGET(x)
275 #endif
276
277 /*
278 * AES-NI intrinsics are available on x86 (32-bit and 64-bit) with
279 * GCC 4.8+, Clang 3.7+ and MSC 2012+.
280 */
281 #ifndef BR_AES_X86NI
282 #if (BR_i386 || BR_amd64) && (BR_GCC_4_8 || BR_CLANG_3_7 || BR_MSC_2012)
283 #define BR_AES_X86NI 1
284 #endif
285 #endif
286
287 /*
288 * SSE2 intrinsics are available on x86 (32-bit and 64-bit) with
289 * GCC 4.4+, Clang 3.7+ and MSC 2005+.
290 */
291 #ifndef BR_SSE2
292 #if (BR_i386 || BR_amd64) && (BR_GCC_4_4 || BR_CLANG_3_7 || BR_MSC_2005)
293 #define BR_SSE2 1
294 #endif
295 #endif
296
297 /*
298 * RDRAND intrinsics are available on x86 (32-bit and 64-bit) with
299 * GCC 4.6+, Clang 3.7+ and MSC 2012+.
300 */
301 #ifndef BR_RDRAND
302 #if (BR_i386 || BR_amd64) && (BR_GCC_4_6 || BR_CLANG_3_7 || BR_MSC_2012)
303 #define BR_RDRAND 1
304 #endif
305 #endif
306
307 /*
308 * Determine type of OS for random number generation. Macro names and
309 * values are documented on:
310 * https://sourceforge.net/p/predef/wiki/OperatingSystems/
311 *
312 * Win32's CryptGenRandom() should be available on Windows systems.
313 *
314 * /dev/urandom should work on all Unix-like systems (including macOS X).
315 *
316 * getentropy() is present on Linux (Glibc 2.25+), FreeBSD (12.0+) and
317 * OpenBSD (5.6+). For OpenBSD, there does not seem to be easy to use
318 * macros to test the minimum version, so we just assume that it is
319 * recent enough (last version without getentropy() has gone out of
320 * support in May 2015).
321 *
322 * Ideally we should use getentropy() on macOS (10.12+) too, but I don't
323 * know how to test the exact OS version with preprocessor macros.
324 *
325 * TODO: enrich the list of detected system.
326 */
327
328 #ifndef BR_USE_URANDOM
329 #if defined _AIX \
330 || defined __ANDROID__ \
331 || defined __FreeBSD__ \
332 || defined __NetBSD__ \
333 || defined __OpenBSD__ \
334 || defined __DragonFly__ \
335 || defined __linux__ \
336 || (defined __sun && (defined __SVR4 || defined __svr4__)) \
337 || (defined __APPLE__ && defined __MACH__)
338 #define BR_USE_URANDOM 1
339 #endif
340 #endif
341
342 #ifndef BR_USE_GETENTROPY
343 #if (defined __linux__ \
344 && (__GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 25))) \
345 || (defined __FreeBSD__ && __FreeBSD__ >= 12) \
346 || defined __OpenBSD__
347 #define BR_USE_GETENTROPY 1
348 #endif
349 #endif
350
351 #ifndef BR_USE_WIN32_RAND
352 #if defined _WIN32 || defined _WIN64
353 #define BR_USE_WIN32_RAND 1
354 #endif
355 #endif
356
357 /*
358 * POWER8 crypto support. We rely on compiler macros for the
359 * architecture, since we do not have a reliable, simple way to detect
360 * the required support at runtime (we could try running an opcode, and
361 * trapping the exception or signal on illegal instruction, but this
362 * induces some non-trivial OS dependencies that we would prefer to
363 * avoid if possible).
364 */
365 #ifndef BR_POWER8
366 #if __GNUC__ && ((_ARCH_PWR8 || _ARCH_PPC) && __CRYPTO__)
367 #define BR_POWER8 1
368 #endif
369 #endif
370
371 /*
372 * Detect endinanness on POWER8.
373 */
374 #if BR_POWER8
375 #if defined BR_POWER8_LE
376 #undef BR_POWER8_BE
377 #if BR_POWER8_LE
378 #define BR_POWER8_BE 0
379 #else
380 #define BR_POWER8_BE 1
381 #endif
382 #elif defined BR_POWER8_BE
383 #undef BR_POWER8_LE
384 #if BR_POWER8_BE
385 #define BR_POWER8_LE 0
386 #else
387 #define BR_POWER8_LE 1
388 #endif
389 #else
390 #if __LITTLE_ENDIAN__
391 #define BR_POWER8_LE 1
392 #define BR_POWER8_BE 0
393 #else
394 #define BR_POWER8_LE 0
395 #define BR_POWER8_BE 1
396 #endif
397 #endif
398 #endif
399
400 /*
401 * Detect support for 128-bit integers.
402 */
403 #if !defined BR_INT128 && !defined BR_UMUL128
404 #ifdef __SIZEOF_INT128__
405 #define BR_INT128 1
406 #elif _M_X64
407 #define BR_UMUL128 1
408 #endif
409 #endif
410
411 /*
412 * Detect support for unaligned accesses with known endianness.
413 *
414 * x86 (both 32-bit and 64-bit) is little-endian and allows unaligned
415 * accesses.
416 *
417 * POWER/PowerPC allows unaligned accesses when big-endian. POWER8 and
418 * later also allow unaligned accesses when little-endian.
419 */
420 #if !defined BR_LE_UNALIGNED && !defined BR_BE_UNALIGNED
421
422 #if __i386 || __i386__ || __x86_64__ || _M_IX86 || _M_X64
423 #define BR_LE_UNALIGNED 1
424 #elif BR_POWER8_BE
425 #define BR_BE_UNALIGNED 1
426 #elif BR_POWER8_LE
427 #define BR_LE_UNALIGNED 1
428 #elif (__powerpc__ || __powerpc64__ || _M_PPC || _ARCH_PPC || _ARCH_PPC64) \
429 && __BIG_ENDIAN__
430 #define BR_BE_UNALIGNED 1
431 #endif
432
433 #endif
434
435 /*
436 * Detect support for an OS-provided time source.
437 */
438
439 #ifndef BR_USE_UNIX_TIME
440 #if defined __unix__ || defined __linux__ \
441 || defined _POSIX_SOURCE || defined _POSIX_C_SOURCE \
442 || (defined __APPLE__ && defined __MACH__)
443 #define BR_USE_UNIX_TIME 1
444 #endif
445 #endif
446
447 #ifndef BR_USE_WIN32_TIME
448 #if defined _WIN32 || defined _WIN64
449 #define BR_USE_WIN32_TIME 1
450 #endif
451 #endif
452
453 /* ==================================================================== */
454 /*
455 * Encoding/decoding functions.
456 *
457 * 32-bit and 64-bit decoding, both little-endian and big-endian, is
458 * implemented with the inline functions below.
459 *
460 * When allowed by some compile-time options (autodetected or provided),
461 * optimised code is used, to perform direct memory access when the
462 * underlying architecture supports it, both for endianness and
463 * alignment. This, however, may trigger strict aliasing issues; the
464 * code below uses unions to perform (supposedly) safe type punning.
465 * Since the C aliasing rules are relatively complex and were amended,
466 * or at least re-explained with different phrasing, in all successive
467 * versions of the C standard, it is always a bit risky to bet that any
468 * specific version of a C compiler got it right, for some notion of
469 * "right".
470 */
471
472 typedef union {
473 uint16_t u;
474 unsigned char b[sizeof(uint16_t)];
475 } br_union_u16;
476
477 typedef union {
478 uint32_t u;
479 unsigned char b[sizeof(uint32_t)];
480 } br_union_u32;
481
482 typedef union {
483 uint64_t u;
484 unsigned char b[sizeof(uint64_t)];
485 } br_union_u64;
486
487 static inline void
488 br_enc16le(void *dst, unsigned x)
489 {
490 #if BR_LE_UNALIGNED
491 ((br_union_u16 *)dst)->u = x;
492 #else
493 unsigned char *buf;
494
495 buf = dst;
496 buf[0] = (unsigned char)x;
497 buf[1] = (unsigned char)(x >> 8);
498 #endif
499 }
500
501 static inline void
502 br_enc16be(void *dst, unsigned x)
503 {
504 #if BR_BE_UNALIGNED
505 ((br_union_u16 *)dst)->u = x;
506 #else
507 unsigned char *buf;
508
509 buf = dst;
510 buf[0] = (unsigned char)(x >> 8);
511 buf[1] = (unsigned char)x;
512 #endif
513 }
514
515 static inline unsigned
516 br_dec16le(const void *src)
517 {
518 #if BR_LE_UNALIGNED
519 return ((const br_union_u16 *)src)->u;
520 #else
521 const unsigned char *buf;
522
523 buf = src;
524 return (unsigned)buf[0] | ((unsigned)buf[1] << 8);
525 #endif
526 }
527
528 static inline unsigned
529 br_dec16be(const void *src)
530 {
531 #if BR_BE_UNALIGNED
532 return ((const br_union_u16 *)src)->u;
533 #else
534 const unsigned char *buf;
535
536 buf = src;
537 return ((unsigned)buf[0] << 8) | (unsigned)buf[1];
538 #endif
539 }
540
541 static inline void
542 br_enc32le(void *dst, uint32_t x)
543 {
544 #if BR_LE_UNALIGNED
545 ((br_union_u32 *)dst)->u = x;
546 #else
547 unsigned char *buf;
548
549 buf = dst;
550 buf[0] = (unsigned char)x;
551 buf[1] = (unsigned char)(x >> 8);
552 buf[2] = (unsigned char)(x >> 16);
553 buf[3] = (unsigned char)(x >> 24);
554 #endif
555 }
556
557 static inline void
558 br_enc32be(void *dst, uint32_t x)
559 {
560 #if BR_BE_UNALIGNED
561 ((br_union_u32 *)dst)->u = x;
562 #else
563 unsigned char *buf;
564
565 buf = dst;
566 buf[0] = (unsigned char)(x >> 24);
567 buf[1] = (unsigned char)(x >> 16);
568 buf[2] = (unsigned char)(x >> 8);
569 buf[3] = (unsigned char)x;
570 #endif
571 }
572
573 static inline uint32_t
574 br_dec32le(const void *src)
575 {
576 #if BR_LE_UNALIGNED
577 return ((const br_union_u32 *)src)->u;
578 #else
579 const unsigned char *buf;
580
581 buf = src;
582 return (uint32_t)buf[0]
583 | ((uint32_t)buf[1] << 8)
584 | ((uint32_t)buf[2] << 16)
585 | ((uint32_t)buf[3] << 24);
586 #endif
587 }
588
589 static inline uint32_t
590 br_dec32be(const void *src)
591 {
592 #if BR_BE_UNALIGNED
593 return ((const br_union_u32 *)src)->u;
594 #else
595 const unsigned char *buf;
596
597 buf = src;
598 return ((uint32_t)buf[0] << 24)
599 | ((uint32_t)buf[1] << 16)
600 | ((uint32_t)buf[2] << 8)
601 | (uint32_t)buf[3];
602 #endif
603 }
604
605 static inline void
606 br_enc64le(void *dst, uint64_t x)
607 {
608 #if BR_LE_UNALIGNED
609 ((br_union_u64 *)dst)->u = x;
610 #else
611 unsigned char *buf;
612
613 buf = dst;
614 br_enc32le(buf, (uint32_t)x);
615 br_enc32le(buf + 4, (uint32_t)(x >> 32));
616 #endif
617 }
618
619 static inline void
620 br_enc64be(void *dst, uint64_t x)
621 {
622 #if BR_BE_UNALIGNED
623 ((br_union_u64 *)dst)->u = x;
624 #else
625 unsigned char *buf;
626
627 buf = dst;
628 br_enc32be(buf, (uint32_t)(x >> 32));
629 br_enc32be(buf + 4, (uint32_t)x);
630 #endif
631 }
632
633 static inline uint64_t
634 br_dec64le(const void *src)
635 {
636 #if BR_LE_UNALIGNED
637 return ((const br_union_u64 *)src)->u;
638 #else
639 const unsigned char *buf;
640
641 buf = src;
642 return (uint64_t)br_dec32le(buf)
643 | ((uint64_t)br_dec32le(buf + 4) << 32);
644 #endif
645 }
646
647 static inline uint64_t
648 br_dec64be(const void *src)
649 {
650 #if BR_BE_UNALIGNED
651 return ((const br_union_u64 *)src)->u;
652 #else
653 const unsigned char *buf;
654
655 buf = src;
656 return ((uint64_t)br_dec32be(buf) << 32)
657 | (uint64_t)br_dec32be(buf + 4);
658 #endif
659 }
660
661 /*
662 * Range decoding and encoding (for several successive values).
663 */
664 void br_range_dec16le(uint16_t *v, size_t num, const void *src);
665 void br_range_dec16be(uint16_t *v, size_t num, const void *src);
666 void br_range_enc16le(void *dst, const uint16_t *v, size_t num);
667 void br_range_enc16be(void *dst, const uint16_t *v, size_t num);
668
669 void br_range_dec32le(uint32_t *v, size_t num, const void *src);
670 void br_range_dec32be(uint32_t *v, size_t num, const void *src);
671 void br_range_enc32le(void *dst, const uint32_t *v, size_t num);
672 void br_range_enc32be(void *dst, const uint32_t *v, size_t num);
673
674 void br_range_dec64le(uint64_t *v, size_t num, const void *src);
675 void br_range_dec64be(uint64_t *v, size_t num, const void *src);
676 void br_range_enc64le(void *dst, const uint64_t *v, size_t num);
677 void br_range_enc64be(void *dst, const uint64_t *v, size_t num);
678
679 /*
680 * Byte-swap a 32-bit integer.
681 */
682 static inline uint32_t
683 br_swap32(uint32_t x)
684 {
685 x = ((x & (uint32_t)0x00FF00FF) << 8)
686 | ((x >> 8) & (uint32_t)0x00FF00FF);
687 return (x << 16) | (x >> 16);
688 }
689
690 /* ==================================================================== */
691 /*
692 * Support code for hash functions.
693 */
694
695 /*
696 * IV for MD5, SHA-1, SHA-224 and SHA-256.
697 */
698 extern const uint32_t br_md5_IV[];
699 extern const uint32_t br_sha1_IV[];
700 extern const uint32_t br_sha224_IV[];
701 extern const uint32_t br_sha256_IV[];
702
703 /*
704 * Round functions for MD5, SHA-1, SHA-224 and SHA-256 (SHA-224 and
705 * SHA-256 use the same round function).
706 */
707 void br_md5_round(const unsigned char *buf, uint32_t *val);
708 void br_sha1_round(const unsigned char *buf, uint32_t *val);
709 void br_sha2small_round(const unsigned char *buf, uint32_t *val);
710
711 /*
712 * The core function for the TLS PRF. It computes
713 * P_hash(secret, label + seed), and XORs the result into the dst buffer.
714 */
715 void br_tls_phash(void *dst, size_t len,
716 const br_hash_class *dig,
717 const void *secret, size_t secret_len, const char *label,
718 size_t seed_num, const br_tls_prf_seed_chunk *seed);
719
720 /*
721 * Copy all configured hash implementations from a multihash context
722 * to another.
723 */
724 static inline void
725 br_multihash_copyimpl(br_multihash_context *dst,
726 const br_multihash_context *src)
727 {
728 memcpy((void *)dst->impl, src->impl, sizeof src->impl);
729 }
730
731 /* ==================================================================== */
732 /*
733 * Constant-time primitives. These functions manipulate 32-bit values in
734 * order to provide constant-time comparisons and multiplexers.
735 *
736 * Boolean values (the "ctl" bits) MUST have value 0 or 1.
737 *
738 * Implementation notes:
739 * =====================
740 *
741 * The uintN_t types are unsigned and with width exactly N bits; the C
742 * standard guarantees that computations are performed modulo 2^N, and
743 * there can be no overflow. Negation (unary '-') works on unsigned types
744 * as well.
745 *
746 * The intN_t types are guaranteed to have width exactly N bits, with no
747 * padding bit, and using two's complement representation. Casting
748 * intN_t to uintN_t really is conversion modulo 2^N. Beware that intN_t
749 * types, being signed, trigger implementation-defined behaviour on
750 * overflow (including raising some signal): with GCC, while modular
751 * arithmetics are usually applied, the optimizer may assume that
752 * overflows don't occur (unless the -fwrapv command-line option is
753 * added); Clang has the additional -ftrapv option to explicitly trap on
754 * integer overflow or underflow.
755 */
756
757 /*
758 * Negate a boolean.
759 */
760 static inline uint32_t
761 NOT(uint32_t ctl)
762 {
763 return ctl ^ 1;
764 }
765
766 /*
767 * Multiplexer: returns x if ctl == 1, y if ctl == 0.
768 */
769 static inline uint32_t
770 MUX(uint32_t ctl, uint32_t x, uint32_t y)
771 {
772 return y ^ (-ctl & (x ^ y));
773 }
774
775 /*
776 * Equality check: returns 1 if x == y, 0 otherwise.
777 */
778 static inline uint32_t
779 EQ(uint32_t x, uint32_t y)
780 {
781 uint32_t q;
782
783 q = x ^ y;
784 return NOT((q | -q) >> 31);
785 }
786
787 /*
788 * Inequality check: returns 1 if x != y, 0 otherwise.
789 */
790 static inline uint32_t
791 NEQ(uint32_t x, uint32_t y)
792 {
793 uint32_t q;
794
795 q = x ^ y;
796 return (q | -q) >> 31;
797 }
798
799 /*
800 * Comparison: returns 1 if x > y, 0 otherwise.
801 */
802 static inline uint32_t
803 GT(uint32_t x, uint32_t y)
804 {
805 /*
806 * If both x < 2^31 and x < 2^31, then y-x will have its high
807 * bit set if x > y, cleared otherwise.
808 *
809 * If either x >= 2^31 or y >= 2^31 (but not both), then the
810 * result is the high bit of x.
811 *
812 * If both x >= 2^31 and y >= 2^31, then we can virtually
813 * subtract 2^31 from both, and we are back to the first case.
814 * Since (y-2^31)-(x-2^31) = y-x, the subtraction is already
815 * fine.
816 */
817 uint32_t z;
818
819 z = y - x;
820 return (z ^ ((x ^ y) & (x ^ z))) >> 31;
821 }
822
823 /*
824 * Other comparisons (greater-or-equal, lower-than, lower-or-equal).
825 */
826 #define GE(x, y) NOT(GT(y, x))
827 #define LT(x, y) GT(y, x)
828 #define LE(x, y) NOT(GT(x, y))
829
830 /*
831 * General comparison: returned value is -1, 0 or 1, depending on
832 * whether x is lower than, equal to, or greater than y.
833 */
834 static inline int32_t
835 CMP(uint32_t x, uint32_t y)
836 {
837 return (int32_t)GT(x, y) | -(int32_t)GT(y, x);
838 }
839
840 /*
841 * Returns 1 if x == 0, 0 otherwise. Take care that the operand is signed.
842 */
843 static inline uint32_t
844 EQ0(int32_t x)
845 {
846 uint32_t q;
847
848 q = (uint32_t)x;
849 return ~(q | -q) >> 31;
850 }
851
852 /*
853 * Returns 1 if x > 0, 0 otherwise. Take care that the operand is signed.
854 */
855 static inline uint32_t
856 GT0(int32_t x)
857 {
858 /*
859 * High bit of -x is 0 if x == 0, but 1 if x > 0.
860 */
861 uint32_t q;
862
863 q = (uint32_t)x;
864 return (~q & -q) >> 31;
865 }
866
867 /*
868 * Returns 1 if x >= 0, 0 otherwise. Take care that the operand is signed.
869 */
870 static inline uint32_t
871 GE0(int32_t x)
872 {
873 return ~(uint32_t)x >> 31;
874 }
875
876 /*
877 * Returns 1 if x < 0, 0 otherwise. Take care that the operand is signed.
878 */
879 static inline uint32_t
880 LT0(int32_t x)
881 {
882 return (uint32_t)x >> 31;
883 }
884
885 /*
886 * Returns 1 if x <= 0, 0 otherwise. Take care that the operand is signed.
887 */
888 static inline uint32_t
889 LE0(int32_t x)
890 {
891 uint32_t q;
892
893 /*
894 * ~-x has its high bit set if and only if -x is nonnegative (as
895 * a signed int), i.e. x is in the -(2^31-1) to 0 range. We must
896 * do an OR with x itself to account for x = -2^31.
897 */
898 q = (uint32_t)x;
899 return (q | ~-q) >> 31;
900 }
901
902 /*
903 * Conditional copy: src[] is copied into dst[] if and only if ctl is 1.
904 * dst[] and src[] may overlap completely (but not partially).
905 */
906 void br_ccopy(uint32_t ctl, void *dst, const void *src, size_t len);
907
908 #define CCOPY br_ccopy
909
910 /*
911 * Compute the bit length of a 32-bit integer. Returned value is between 0
912 * and 32 (inclusive).
913 */
914 static inline uint32_t
915 BIT_LENGTH(uint32_t x)
916 {
917 uint32_t k, c;
918
919 k = NEQ(x, 0);
920 c = GT(x, 0xFFFF); x = MUX(c, x >> 16, x); k += c << 4;
921 c = GT(x, 0x00FF); x = MUX(c, x >> 8, x); k += c << 3;
922 c = GT(x, 0x000F); x = MUX(c, x >> 4, x); k += c << 2;
923 c = GT(x, 0x0003); x = MUX(c, x >> 2, x); k += c << 1;
924 k += GT(x, 0x0001);
925 return k;
926 }
927
928 /*
929 * Compute the minimum of x and y.
930 */
931 static inline uint32_t
932 MIN(uint32_t x, uint32_t y)
933 {
934 return MUX(GT(x, y), y, x);
935 }
936
937 /*
938 * Compute the maximum of x and y.
939 */
940 static inline uint32_t
941 MAX(uint32_t x, uint32_t y)
942 {
943 return MUX(GT(x, y), x, y);
944 }
945
946 /*
947 * Multiply two 32-bit integers, with a 64-bit result. This default
948 * implementation assumes that the basic multiplication operator
949 * yields constant-time code.
950 */
951 #define MUL(x, y) ((uint64_t)(x) * (uint64_t)(y))
952
953 #if BR_CT_MUL31
954
955 /*
956 * Alternate implementation of MUL31, that will be constant-time on some
957 * (old) platforms where the default MUL31 is not. Unfortunately, it is
958 * also substantially slower, and yields larger code, on more modern
959 * platforms, which is why it is deactivated by default.
960 *
961 * MUL31_lo() must do some extra work because on some platforms, the
962 * _signed_ multiplication may return early if the top bits are 1.
963 * Simply truncating (casting) the output of MUL31() would not be
964 * sufficient, because the compiler may notice that we keep only the low
965 * word, and then replace automatically the unsigned multiplication with
966 * a signed multiplication opcode.
967 */
968 #define MUL31(x, y) ((uint64_t)((x) | (uint32_t)0x80000000) \
969 * (uint64_t)((y) | (uint32_t)0x80000000) \
970 - ((uint64_t)(x) << 31) - ((uint64_t)(y) << 31) \
971 - ((uint64_t)1 << 62))
972 static inline uint32_t
973 MUL31_lo(uint32_t x, uint32_t y)
974 {
975 uint32_t xl, xh;
976 uint32_t yl, yh;
977
978 xl = (x & 0xFFFF) | (uint32_t)0x80000000;
979 xh = (x >> 16) | (uint32_t)0x80000000;
980 yl = (y & 0xFFFF) | (uint32_t)0x80000000;
981 yh = (y >> 16) | (uint32_t)0x80000000;
982 return (xl * yl + ((xl * yh + xh * yl) << 16)) & (uint32_t)0x7FFFFFFF;
983 }
984
985 #else
986
987 /*
988 * Multiply two 31-bit integers, with a 62-bit result. This default
989 * implementation assumes that the basic multiplication operator
990 * yields constant-time code.
991 * The MUL31_lo() macro returns only the low 31 bits of the product.
992 */
993 #define MUL31(x, y) ((uint64_t)(x) * (uint64_t)(y))
994 #define MUL31_lo(x, y) (((uint32_t)(x) * (uint32_t)(y)) & (uint32_t)0x7FFFFFFF)
995
996 #endif
997
998 /*
999 * Multiply two words together; the sum of the lengths of the two
1000 * operands must not exceed 31 (for instance, one operand may use 16
1001 * bits if the other fits on 15). If BR_CT_MUL15 is non-zero, then the
1002 * macro will contain some extra operations that help in making the
1003 * operation constant-time on some platforms, where the basic 32-bit
1004 * multiplication is not constant-time.
1005 */
1006 #if BR_CT_MUL15
1007 #define MUL15(x, y) (((uint32_t)(x) | (uint32_t)0x80000000) \
1008 * ((uint32_t)(y) | (uint32_t)0x80000000) \
1009 & (uint32_t)0x7FFFFFFF)
1010 #else
1011 #define MUL15(x, y) ((uint32_t)(x) * (uint32_t)(y))
1012 #endif
1013
1014 /*
1015 * Arithmetic right shift (sign bit is copied). What happens when
1016 * right-shifting a negative value is _implementation-defined_, so it
1017 * does not trigger undefined behaviour, but it is still up to each
1018 * compiler to define (and document) what it does. Most/all compilers
1019 * will do an arithmetic shift, the sign bit being used to fill the
1020 * holes; this is a native operation on the underlying CPU, and it would
1021 * make little sense for the compiler to do otherwise. GCC explicitly
1022 * documents that it follows that convention.
1023 *
1024 * Still, if BR_NO_ARITH_SHIFT is defined (and non-zero), then an
1025 * alternate version will be used, that does not rely on such
1026 * implementation-defined behaviour. Unfortunately, it is also slower
1027 * and yields bigger code, which is why it is deactivated by default.
1028 */
1029 #if BR_NO_ARITH_SHIFT
1030 #define ARSH(x, n) (((uint32_t)(x) >> (n)) \
1031 | ((-((uint32_t)(x) >> 31)) << (32 - (n))))
1032 #else
1033 #define ARSH(x, n) ((*(int32_t *)&(x)) >> (n))
1034 #endif
1035
1036 /*
1037 * Constant-time division. The dividend hi:lo is divided by the
1038 * divisor d; the quotient is returned and the remainder is written
1039 * in *r. If hi == d, then the quotient does not fit on 32 bits;
1040 * returned value is thus truncated. If hi > d, returned values are
1041 * indeterminate.
1042 */
1043 uint32_t br_divrem(uint32_t hi, uint32_t lo, uint32_t d, uint32_t *r);
1044
1045 /*
1046 * Wrapper for br_divrem(); the remainder is returned, and the quotient
1047 * is discarded.
1048 */
1049 static inline uint32_t
1050 br_rem(uint32_t hi, uint32_t lo, uint32_t d)
1051 {
1052 uint32_t r;
1053
1054 br_divrem(hi, lo, d, &r);
1055 return r;
1056 }
1057
1058 /*
1059 * Wrapper for br_divrem(); the quotient is returned, and the remainder
1060 * is discarded.
1061 */
1062 static inline uint32_t
1063 br_div(uint32_t hi, uint32_t lo, uint32_t d)
1064 {
1065 uint32_t r;
1066
1067 return br_divrem(hi, lo, d, &r);
1068 }
1069
1070 /* ==================================================================== */
1071
1072 /*
1073 * Integers 'i32'
1074 * --------------
1075 *
1076 * The 'i32' functions implement computations on big integers using
1077 * an internal representation as an array of 32-bit integers. For
1078 * an array x[]:
1079 * -- x[0] contains the "announced bit length" of the integer
1080 * -- x[1], x[2]... contain the value in little-endian order (x[1]
1081 * contains the least significant 32 bits)
1082 *
1083 * Multiplications rely on the elementary 32x32->64 multiplication.
1084 *
1085 * The announced bit length specifies the number of bits that are
1086 * significant in the subsequent 32-bit words. Unused bits in the
1087 * last (most significant) word are set to 0; subsequent words are
1088 * uninitialized and need not exist at all.
1089 *
1090 * The execution time and memory access patterns of all computations
1091 * depend on the announced bit length, but not on the actual word
1092 * values. For modular integers, the announced bit length of any integer
1093 * modulo n is equal to the actual bit length of n; thus, computations
1094 * on modular integers are "constant-time" (only the modulus length may
1095 * leak).
1096 */
1097
1098 /*
1099 * Compute the actual bit length of an integer. The argument x should
1100 * point to the first (least significant) value word of the integer.
1101 * The len 'xlen' contains the number of 32-bit words to access.
1102 *
1103 * CT: value or length of x does not leak.
1104 */
1105 uint32_t br_i32_bit_length(uint32_t *x, size_t xlen);
1106
1107 /*
1108 * Decode an integer from its big-endian unsigned representation. The
1109 * "true" bit length of the integer is computed, but all words of x[]
1110 * corresponding to the full 'len' bytes of the source are set.
1111 *
1112 * CT: value or length of x does not leak.
1113 */
1114 void br_i32_decode(uint32_t *x, const void *src, size_t len);
1115
1116 /*
1117 * Decode an integer from its big-endian unsigned representation. The
1118 * integer MUST be lower than m[]; the announced bit length written in
1119 * x[] will be equal to that of m[]. All 'len' bytes from the source are
1120 * read.
1121 *
1122 * Returned value is 1 if the decode value fits within the modulus, 0
1123 * otherwise. In the latter case, the x[] buffer will be set to 0 (but
1124 * still with the announced bit length of m[]).
1125 *
1126 * CT: value or length of x does not leak. Memory access pattern depends
1127 * only of 'len' and the announced bit length of m. Whether x fits or
1128 * not does not leak either.
1129 */
1130 uint32_t br_i32_decode_mod(uint32_t *x,
1131 const void *src, size_t len, const uint32_t *m);
1132
1133 /*
1134 * Reduce an integer (a[]) modulo another (m[]). The result is written
1135 * in x[] and its announced bit length is set to be equal to that of m[].
1136 *
1137 * x[] MUST be distinct from a[] and m[].
1138 *
1139 * CT: only announced bit lengths leak, not values of x, a or m.
1140 */
1141 void br_i32_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m);
1142
1143 /*
1144 * Decode an integer from its big-endian unsigned representation, and
1145 * reduce it modulo the provided modulus m[]. The announced bit length
1146 * of the result is set to be equal to that of the modulus.
1147 *
1148 * x[] MUST be distinct from m[].
1149 */
1150 void br_i32_decode_reduce(uint32_t *x,
1151 const void *src, size_t len, const uint32_t *m);
1152
1153 /*
1154 * Encode an integer into its big-endian unsigned representation. The
1155 * output length in bytes is provided (parameter 'len'); if the length
1156 * is too short then the integer is appropriately truncated; if it is
1157 * too long then the extra bytes are set to 0.
1158 */
1159 void br_i32_encode(void *dst, size_t len, const uint32_t *x);
1160
1161 /*
1162 * Multiply x[] by 2^32 and then add integer z, modulo m[]. This
1163 * function assumes that x[] and m[] have the same announced bit
1164 * length, and the announced bit length of m[] matches its true
1165 * bit length.
1166 *
1167 * x[] and m[] MUST be distinct arrays.
1168 *
1169 * CT: only the common announced bit length of x and m leaks, not
1170 * the values of x, z or m.
1171 */
1172 void br_i32_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m);
1173
1174 /*
1175 * Extract one word from an integer. The offset is counted in bits.
1176 * The word MUST entirely fit within the word elements corresponding
1177 * to the announced bit length of a[].
1178 */
1179 static inline uint32_t
1180 br_i32_word(const uint32_t *a, uint32_t off)
1181 {
1182 size_t u;
1183 unsigned j;
1184
1185 u = (size_t)(off >> 5) + 1;
1186 j = (unsigned)off & 31;
1187 if (j == 0) {
1188 return a[u];
1189 } else {
1190 return (a[u] >> j) | (a[u + 1] << (32 - j));
1191 }
1192 }
1193
1194 /*
1195 * Test whether an integer is zero.
1196 */
1197 uint32_t br_i32_iszero(const uint32_t *x);
1198
1199 /*
1200 * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[]
1201 * is unmodified, but the carry is still computed and returned. The
1202 * arrays a[] and b[] MUST have the same announced bit length.
1203 *
1204 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
1205 */
1206 uint32_t br_i32_add(uint32_t *a, const uint32_t *b, uint32_t ctl);
1207
1208 /*
1209 * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0,
1210 * then a[] is unmodified, but the carry is still computed and returned.
1211 * The arrays a[] and b[] MUST have the same announced bit length.
1212 *
1213 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
1214 */
1215 uint32_t br_i32_sub(uint32_t *a, const uint32_t *b, uint32_t ctl);
1216
1217 /*
1218 * Compute d+a*b, result in d. The initial announced bit length of d[]
1219 * MUST match that of a[]. The d[] array MUST be large enough to
1220 * accommodate the full result, plus (possibly) an extra word. The
1221 * resulting announced bit length of d[] will be the sum of the announced
1222 * bit lengths of a[] and b[] (therefore, it may be larger than the actual
1223 * bit length of the numerical result).
1224 *
1225 * a[] and b[] may be the same array. d[] must be disjoint from both a[]
1226 * and b[].
1227 */
1228 void br_i32_mulacc(uint32_t *d, const uint32_t *a, const uint32_t *b);
1229
1230 /*
1231 * Zeroize an integer. The announced bit length is set to the provided
1232 * value, and the corresponding words are set to 0.
1233 */
1234 static inline void
1235 br_i32_zero(uint32_t *x, uint32_t bit_len)
1236 {
1237 *x ++ = bit_len;
1238 memset(x, 0, ((bit_len + 31) >> 5) * sizeof *x);
1239 }
1240
1241 /*
1242 * Compute -(1/x) mod 2^32. If x is even, then this function returns 0.
1243 */
1244 uint32_t br_i32_ninv32(uint32_t x);
1245
1246 /*
1247 * Convert a modular integer to Montgomery representation. The integer x[]
1248 * MUST be lower than m[], but with the same announced bit length.
1249 */
1250 void br_i32_to_monty(uint32_t *x, const uint32_t *m);
1251
1252 /*
1253 * Convert a modular integer back from Montgomery representation. The
1254 * integer x[] MUST be lower than m[], but with the same announced bit
1255 * length. The "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is
1256 * the least significant value word of m[] (this works only if m[] is
1257 * an odd integer).
1258 */
1259 void br_i32_from_monty(uint32_t *x, const uint32_t *m, uint32_t m0i);
1260
1261 /*
1262 * Compute a modular Montgomery multiplication. d[] is filled with the
1263 * value of x*y/R modulo m[] (where R is the Montgomery factor). The
1264 * array d[] MUST be distinct from x[], y[] and m[]. x[] and y[] MUST be
1265 * numerically lower than m[]. x[] and y[] MAY be the same array. The
1266 * "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is the least
1267 * significant value word of m[] (this works only if m[] is an odd
1268 * integer).
1269 */
1270 void br_i32_montymul(uint32_t *d, const uint32_t *x, const uint32_t *y,
1271 const uint32_t *m, uint32_t m0i);
1272
1273 /*
1274 * Compute a modular exponentiation. x[] MUST be an integer modulo m[]
1275 * (same announced bit length, lower value). m[] MUST be odd. The
1276 * exponent is in big-endian unsigned notation, over 'elen' bytes. The
1277 * "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is the least
1278 * significant value word of m[] (this works only if m[] is an odd
1279 * integer). The t1[] and t2[] parameters must be temporary arrays,
1280 * each large enough to accommodate an integer with the same size as m[].
1281 */
1282 void br_i32_modpow(uint32_t *x, const unsigned char *e, size_t elen,
1283 const uint32_t *m, uint32_t m0i, uint32_t *t1, uint32_t *t2);
1284
1285 /* ==================================================================== */
1286
1287 /*
1288 * Integers 'i31'
1289 * --------------
1290 *
1291 * The 'i31' functions implement computations on big integers using
1292 * an internal representation as an array of 32-bit integers. For
1293 * an array x[]:
1294 * -- x[0] encodes the array length and the "announced bit length"
1295 * of the integer: namely, if the announced bit length is k,
1296 * then x[0] = ((k / 31) << 5) + (k % 31).
1297 * -- x[1], x[2]... contain the value in little-endian order, 31
1298 * bits per word (x[1] contains the least significant 31 bits).
1299 * The upper bit of each word is 0.
1300 *
1301 * Multiplications rely on the elementary 32x32->64 multiplication.
1302 *
1303 * The announced bit length specifies the number of bits that are
1304 * significant in the subsequent 32-bit words. Unused bits in the
1305 * last (most significant) word are set to 0; subsequent words are
1306 * uninitialized and need not exist at all.
1307 *
1308 * The execution time and memory access patterns of all computations
1309 * depend on the announced bit length, but not on the actual word
1310 * values. For modular integers, the announced bit length of any integer
1311 * modulo n is equal to the actual bit length of n; thus, computations
1312 * on modular integers are "constant-time" (only the modulus length may
1313 * leak).
1314 */
1315
1316 /*
1317 * Test whether an integer is zero.
1318 */
1319 uint32_t br_i31_iszero(const uint32_t *x);
1320
1321 /*
1322 * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[]
1323 * is unmodified, but the carry is still computed and returned. The
1324 * arrays a[] and b[] MUST have the same announced bit length.
1325 *
1326 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
1327 */
1328 uint32_t br_i31_add(uint32_t *a, const uint32_t *b, uint32_t ctl);
1329
1330 /*
1331 * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0,
1332 * then a[] is unmodified, but the carry is still computed and returned.
1333 * The arrays a[] and b[] MUST have the same announced bit length.
1334 *
1335 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
1336 */
1337 uint32_t br_i31_sub(uint32_t *a, const uint32_t *b, uint32_t ctl);
1338
1339 /*
1340 * Compute the ENCODED actual bit length of an integer. The argument x
1341 * should point to the first (least significant) value word of the
1342 * integer. The len 'xlen' contains the number of 32-bit words to
1343 * access. The upper bit of each value word MUST be 0.
1344 * Returned value is ((k / 31) << 5) + (k % 31) if the bit length is k.
1345 *
1346 * CT: value or length of x does not leak.
1347 */
1348 uint32_t br_i31_bit_length(uint32_t *x, size_t xlen);
1349
1350 /*
1351 * Decode an integer from its big-endian unsigned representation. The
1352 * "true" bit length of the integer is computed and set in the encoded
1353 * announced bit length (x[0]), but all words of x[] corresponding to
1354 * the full 'len' bytes of the source are set.
1355 *
1356 * CT: value or length of x does not leak.
1357 */
1358 void br_i31_decode(uint32_t *x, const void *src, size_t len);
1359
1360 /*
1361 * Decode an integer from its big-endian unsigned representation. The
1362 * integer MUST be lower than m[]; the (encoded) announced bit length
1363 * written in x[] will be equal to that of m[]. All 'len' bytes from the
1364 * source are read.
1365 *
1366 * Returned value is 1 if the decode value fits within the modulus, 0
1367 * otherwise. In the latter case, the x[] buffer will be set to 0 (but
1368 * still with the announced bit length of m[]).
1369 *
1370 * CT: value or length of x does not leak. Memory access pattern depends
1371 * only of 'len' and the announced bit length of m. Whether x fits or
1372 * not does not leak either.
1373 */
1374 uint32_t br_i31_decode_mod(uint32_t *x,
1375 const void *src, size_t len, const uint32_t *m);
1376
1377 /*
1378 * Zeroize an integer. The announced bit length is set to the provided
1379 * value, and the corresponding words are set to 0. The ENCODED bit length
1380 * is expected here.
1381 */
1382 static inline void
1383 br_i31_zero(uint32_t *x, uint32_t bit_len)
1384 {
1385 *x ++ = bit_len;
1386 memset(x, 0, ((bit_len + 31) >> 5) * sizeof *x);
1387 }
1388
1389 /*
1390 * Right-shift an integer. The shift amount must be lower than 31
1391 * bits.
1392 */
1393 void br_i31_rshift(uint32_t *x, int count);
1394
1395 /*
1396 * Reduce an integer (a[]) modulo another (m[]). The result is written
1397 * in x[] and its announced bit length is set to be equal to that of m[].
1398 *
1399 * x[] MUST be distinct from a[] and m[].
1400 *
1401 * CT: only announced bit lengths leak, not values of x, a or m.
1402 */
1403 void br_i31_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m);
1404
1405 /*
1406 * Decode an integer from its big-endian unsigned representation, and
1407 * reduce it modulo the provided modulus m[]. The announced bit length
1408 * of the result is set to be equal to that of the modulus.
1409 *
1410 * x[] MUST be distinct from m[].
1411 */
1412 void br_i31_decode_reduce(uint32_t *x,
1413 const void *src, size_t len, const uint32_t *m);
1414
1415 /*
1416 * Multiply x[] by 2^31 and then add integer z, modulo m[]. This
1417 * function assumes that x[] and m[] have the same announced bit
1418 * length, the announced bit length of m[] matches its true
1419 * bit length.
1420 *
1421 * x[] and m[] MUST be distinct arrays. z MUST fit in 31 bits (upper
1422 * bit set to 0).
1423 *
1424 * CT: only the common announced bit length of x and m leaks, not
1425 * the values of x, z or m.
1426 */
1427 void br_i31_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m);
1428
1429 /*
1430 * Encode an integer into its big-endian unsigned representation. The
1431 * output length in bytes is provided (parameter 'len'); if the length
1432 * is too short then the integer is appropriately truncated; if it is
1433 * too long then the extra bytes are set to 0.
1434 */
1435 void br_i31_encode(void *dst, size_t len, const uint32_t *x);
1436
1437 /*
1438 * Compute -(1/x) mod 2^31. If x is even, then this function returns 0.
1439 */
1440 uint32_t br_i31_ninv31(uint32_t x);
1441
1442 /*
1443 * Compute a modular Montgomery multiplication. d[] is filled with the
1444 * value of x*y/R modulo m[] (where R is the Montgomery factor). The
1445 * array d[] MUST be distinct from x[], y[] and m[]. x[] and y[] MUST be
1446 * numerically lower than m[]. x[] and y[] MAY be the same array. The
1447 * "m0i" parameter is equal to -(1/m0) mod 2^31, where m0 is the least
1448 * significant value word of m[] (this works only if m[] is an odd
1449 * integer).
1450 */
1451 void br_i31_montymul(uint32_t *d, const uint32_t *x, const uint32_t *y,
1452 const uint32_t *m, uint32_t m0i);
1453
1454 /*
1455 * Convert a modular integer to Montgomery representation. The integer x[]
1456 * MUST be lower than m[], but with the same announced bit length.
1457 */
1458 void br_i31_to_monty(uint32_t *x, const uint32_t *m);
1459
1460 /*
1461 * Convert a modular integer back from Montgomery representation. The
1462 * integer x[] MUST be lower than m[], but with the same announced bit
1463 * length. The "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is
1464 * the least significant value word of m[] (this works only if m[] is
1465 * an odd integer).
1466 */
1467 void br_i31_from_monty(uint32_t *x, const uint32_t *m, uint32_t m0i);
1468
1469 /*
1470 * Compute a modular exponentiation. x[] MUST be an integer modulo m[]
1471 * (same announced bit length, lower value). m[] MUST be odd. The
1472 * exponent is in big-endian unsigned notation, over 'elen' bytes. The
1473 * "m0i" parameter is equal to -(1/m0) mod 2^31, where m0 is the least
1474 * significant value word of m[] (this works only if m[] is an odd
1475 * integer). The t1[] and t2[] parameters must be temporary arrays,
1476 * each large enough to accommodate an integer with the same size as m[].
1477 */
1478 void br_i31_modpow(uint32_t *x, const unsigned char *e, size_t elen,
1479 const uint32_t *m, uint32_t m0i, uint32_t *t1, uint32_t *t2);
1480
1481 /*
1482 * Compute a modular exponentiation. x[] MUST be an integer modulo m[]
1483 * (same announced bit length, lower value). m[] MUST be odd. The
1484 * exponent is in big-endian unsigned notation, over 'elen' bytes. The
1485 * "m0i" parameter is equal to -(1/m0) mod 2^31, where m0 is the least
1486 * significant value word of m[] (this works only if m[] is an odd
1487 * integer). The tmp[] array is used for temporaries, and has size
1488 * 'twlen' words; it must be large enough to accommodate at least two
1489 * temporary values with the same size as m[] (including the leading
1490 * "bit length" word). If there is room for more temporaries, then this
1491 * function may use the extra room for window-based optimisation,
1492 * resulting in faster computations.
1493 *
1494 * Returned value is 1 on success, 0 on error. An error is reported if
1495 * the provided tmp[] array is too short.
1496 */
1497 uint32_t br_i31_modpow_opt(uint32_t *x, const unsigned char *e, size_t elen,
1498 const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);
1499
1500 /*
1501 * Compute d+a*b, result in d. The initial announced bit length of d[]
1502 * MUST match that of a[]. The d[] array MUST be large enough to
1503 * accommodate the full result, plus (possibly) an extra word. The
1504 * resulting announced bit length of d[] will be the sum of the announced
1505 * bit lengths of a[] and b[] (therefore, it may be larger than the actual
1506 * bit length of the numerical result).
1507 *
1508 * a[] and b[] may be the same array. d[] must be disjoint from both a[]
1509 * and b[].
1510 */
1511 void br_i31_mulacc(uint32_t *d, const uint32_t *a, const uint32_t *b);
1512
1513 /*
1514 * Compute x/y mod m, result in x. Values x and y must be between 0 and
1515 * m-1, and have the same announced bit length as m. Modulus m must be
1516 * odd. The "m0i" parameter is equal to -1/m mod 2^31. The array 't'
1517 * must point to a temporary area that can hold at least three integers
1518 * of the size of m.
1519 *
1520 * m may not overlap x and y. x and y may overlap each other (this can
1521 * be useful to test whether a value is invertible modulo m). t must be
1522 * disjoint from all other arrays.
1523 *
1524 * Returned value is 1 on success, 0 otherwise. Success is attained if
1525 * y is invertible modulo m.
1526 */
1527 uint32_t br_i31_moddiv(uint32_t *x, const uint32_t *y,
1528 const uint32_t *m, uint32_t m0i, uint32_t *t);
1529
1530 /* ==================================================================== */
1531
1532 /*
1533 * FIXME: document "i15" functions.
1534 */
1535
1536 static inline void
1537 br_i15_zero(uint16_t *x, uint16_t bit_len)
1538 {
1539 *x ++ = bit_len;
1540 memset(x, 0, ((bit_len + 15) >> 4) * sizeof *x);
1541 }
1542
1543 uint32_t br_i15_iszero(const uint16_t *x);
1544
1545 uint16_t br_i15_ninv15(uint16_t x);
1546
1547 uint32_t br_i15_add(uint16_t *a, const uint16_t *b, uint32_t ctl);
1548
1549 uint32_t br_i15_sub(uint16_t *a, const uint16_t *b, uint32_t ctl);
1550
1551 void br_i15_muladd_small(uint16_t *x, uint16_t z, const uint16_t *m);
1552
1553 void br_i15_montymul(uint16_t *d, const uint16_t *x, const uint16_t *y,
1554 const uint16_t *m, uint16_t m0i);
1555
1556 void br_i15_to_monty(uint16_t *x, const uint16_t *m);
1557
1558 void br_i15_modpow(uint16_t *x, const unsigned char *e, size_t elen,
1559 const uint16_t *m, uint16_t m0i, uint16_t *t1, uint16_t *t2);
1560
1561 uint32_t br_i15_modpow_opt(uint16_t *x, const unsigned char *e, size_t elen,
1562 const uint16_t *m, uint16_t m0i, uint16_t *tmp, size_t twlen);
1563
1564 void br_i15_encode(void *dst, size_t len, const uint16_t *x);
1565
1566 uint32_t br_i15_decode_mod(uint16_t *x,
1567 const void *src, size_t len, const uint16_t *m);
1568
1569 void br_i15_rshift(uint16_t *x, int count);
1570
1571 uint32_t br_i15_bit_length(uint16_t *x, size_t xlen);
1572
1573 void br_i15_decode(uint16_t *x, const void *src, size_t len);
1574
1575 void br_i15_from_monty(uint16_t *x, const uint16_t *m, uint16_t m0i);
1576
1577 void br_i15_decode_reduce(uint16_t *x,
1578 const void *src, size_t len, const uint16_t *m);
1579
1580 void br_i15_reduce(uint16_t *x, const uint16_t *a, const uint16_t *m);
1581
1582 void br_i15_mulacc(uint16_t *d, const uint16_t *a, const uint16_t *b);
1583
1584 uint32_t br_i15_moddiv(uint16_t *x, const uint16_t *y,
1585 const uint16_t *m, uint16_t m0i, uint16_t *t);
1586
1587 /*
1588 * Variant of br_i31_modpow_opt() that internally uses 64x64->128
1589 * multiplications. It expects the same parameters as br_i31_modpow_opt(),
1590 * except that the temporaries should be 64-bit integers, not 32-bit
1591 * integers.
1592 */
1593 uint32_t br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen,
1594 const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen);
1595
1596 /*
1597 * Type for a function with the same API as br_i31_modpow_opt() (some
1598 * implementations of this type may have stricter alignment requirements
1599 * on the temporaries).
1600 */
1601 typedef uint32_t (*br_i31_modpow_opt_type)(uint32_t *x,
1602 const unsigned char *e, size_t elen,
1603 const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);
1604
1605 /*
1606 * Wrapper for br_i62_modpow_opt() that uses the same type as
1607 * br_i31_modpow_opt(); however, it requires its 'tmp' argument to the
1608 * 64-bit aligned.
1609 */
1610 uint32_t br_i62_modpow_opt_as_i31(uint32_t *x,
1611 const unsigned char *e, size_t elen,
1612 const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);
1613
1614 /* ==================================================================== */
1615
1616 static inline size_t
1617 br_digest_size(const br_hash_class *digest_class)
1618 {
1619 return (size_t)(digest_class->desc >> BR_HASHDESC_OUT_OFF)
1620 & BR_HASHDESC_OUT_MASK;
1621 }
1622
1623 /*
1624 * Get the output size (in bytes) of a hash function.
1625 */
1626 size_t br_digest_size_by_ID(int digest_id);
1627
1628 /*
1629 * Get the OID (encoded OBJECT IDENTIFIER value, without tag and length)
1630 * for a hash function. If digest_id is not a supported digest identifier
1631 * (in particular if it is equal to 0, i.e. br_md5sha1_ID), then NULL is
1632 * returned and *len is set to 0.
1633 */
1634 const unsigned char *br_digest_OID(int digest_id, size_t *len);
1635
1636 /* ==================================================================== */
1637 /*
1638 * DES support functions.
1639 */
1640
1641 /*
1642 * Apply DES Initial Permutation.
1643 */
1644 void br_des_do_IP(uint32_t *xl, uint32_t *xr);
1645
1646 /*
1647 * Apply DES Final Permutation (inverse of IP).
1648 */
1649 void br_des_do_invIP(uint32_t *xl, uint32_t *xr);
1650
1651 /*
1652 * Key schedule unit: for a DES key (8 bytes), compute 16 subkeys. Each
1653 * subkey is two 28-bit words represented as two 32-bit words; the PC-2
1654 * bit extration is NOT applied.
1655 */
1656 void br_des_keysched_unit(uint32_t *skey, const void *key);
1657
1658 /*
1659 * Reversal of 16 DES sub-keys (for decryption).
1660 */
1661 void br_des_rev_skey(uint32_t *skey);
1662
1663 /*
1664 * DES/3DES key schedule for 'des_tab' (encryption direction). Returned
1665 * value is the number of rounds.
1666 */
1667 unsigned br_des_tab_keysched(uint32_t *skey, const void *key, size_t key_len);
1668
1669 /*
1670 * DES/3DES key schedule for 'des_ct' (encryption direction). Returned
1671 * value is the number of rounds.
1672 */
1673 unsigned br_des_ct_keysched(uint32_t *skey, const void *key, size_t key_len);
1674
1675 /*
1676 * DES/3DES subkey decompression (from the compressed bitsliced subkeys).
1677 */
1678 void br_des_ct_skey_expand(uint32_t *sk_exp,
1679 unsigned num_rounds, const uint32_t *skey);
1680
1681 /*
1682 * DES/3DES block encryption/decryption ('des_tab').
1683 */
1684 void br_des_tab_process_block(unsigned num_rounds,
1685 const uint32_t *skey, void *block);
1686
1687 /*
1688 * DES/3DES block encryption/decryption ('des_ct').
1689 */
1690 void br_des_ct_process_block(unsigned num_rounds,
1691 const uint32_t *skey, void *block);
1692
1693 /* ==================================================================== */
1694 /*
1695 * AES support functions.
1696 */
1697
1698 /*
1699 * The AES S-box (256-byte table).
1700 */
1701 extern const unsigned char br_aes_S[];
1702
1703 /*
1704 * AES key schedule. skey[] is filled with n+1 128-bit subkeys, where n
1705 * is the number of rounds (10 to 14, depending on key size). The number
1706 * of rounds is returned. If the key size is invalid (not 16, 24 or 32),
1707 * then 0 is returned.
1708 *
1709 * This implementation uses a 256-byte table and is NOT constant-time.
1710 */
1711 unsigned br_aes_keysched(uint32_t *skey, const void *key, size_t key_len);
1712
1713 /*
1714 * AES key schedule for decryption ('aes_big' implementation).
1715 */
1716 unsigned br_aes_big_keysched_inv(uint32_t *skey,
1717 const void *key, size_t key_len);
1718
1719 /*
1720 * AES block encryption with the 'aes_big' implementation (fast, but
1721 * not constant-time). This function encrypts a single block "in place".
1722 */
1723 void br_aes_big_encrypt(unsigned num_rounds, const uint32_t *skey, void *data);
1724
1725 /*
1726 * AES block decryption with the 'aes_big' implementation (fast, but
1727 * not constant-time). This function decrypts a single block "in place".
1728 */
1729 void br_aes_big_decrypt(unsigned num_rounds, const uint32_t *skey, void *data);
1730
1731 /*
1732 * AES block encryption with the 'aes_small' implementation (small, but
1733 * slow and not constant-time). This function encrypts a single block
1734 * "in place".
1735 */
1736 void br_aes_small_encrypt(unsigned num_rounds,
1737 const uint32_t *skey, void *data);
1738
1739 /*
1740 * AES block decryption with the 'aes_small' implementation (small, but
1741 * slow and not constant-time). This function decrypts a single block
1742 * "in place".
1743 */
1744 void br_aes_small_decrypt(unsigned num_rounds,
1745 const uint32_t *skey, void *data);
1746
1747 /*
1748 * The constant-time implementation is "bitsliced": the 128-bit state is
1749 * split over eight 32-bit words q* in the following way:
1750 *
1751 * -- Input block consists in 16 bytes:
1752 * a00 a10 a20 a30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33
1753 * In the terminology of FIPS 197, this is a 4x4 matrix which is read
1754 * column by column.
1755 *
1756 * -- Each byte is split into eight bits which are distributed over the
1757 * eight words, at the same rank. Thus, for a byte x at rank k, bit 0
1758 * (least significant) of x will be at rank k in q0 (if that bit is b,
1759 * then it contributes "b << k" to the value of q0), bit 1 of x will be
1760 * at rank k in q1, and so on.
1761 *
1762 * -- Ranks given to bits are in "row order" and are either all even, or
1763 * all odd. Two independent AES states are thus interleaved, one using
1764 * the even ranks, the other the odd ranks. Row order means:
1765 * a00 a01 a02 a03 a10 a11 a12 a13 a20 a21 a22 a23 a30 a31 a32 a33
1766 *
1767 * Converting input bytes from two AES blocks to bitslice representation
1768 * is done in the following way:
1769 * -- Decode first block into the four words q0 q2 q4 q6, in that order,
1770 * using little-endian convention.
1771 * -- Decode second block into the four words q1 q3 q5 q7, in that order,
1772 * using little-endian convention.
1773 * -- Call br_aes_ct_ortho().
1774 *
1775 * Converting back to bytes is done by using the reverse operations. Note
1776 * that br_aes_ct_ortho() is its own inverse.
1777 */
1778
1779 /*
1780 * Perform bytewise orthogonalization of eight 32-bit words. Bytes
1781 * of q0..q7 are spread over all words: for a byte x that occurs
1782 * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit
1783 * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j.
1784 *
1785 * This operation is an involution.
1786 */
1787 void br_aes_ct_ortho(uint32_t *q);
1788
1789 /*
1790 * The AES S-box, as a bitsliced constant-time version. The input array
1791 * consists in eight 32-bit words; 32 S-box instances are computed in
1792 * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant)
1793 * are spread over the words 0 to 7, at the same rank.
1794 */
1795 void br_aes_ct_bitslice_Sbox(uint32_t *q);
1796
1797 /*
1798 * Like br_aes_bitslice_Sbox(), but for the inverse S-box.
1799 */
1800 void br_aes_ct_bitslice_invSbox(uint32_t *q);
1801
1802 /*
1803 * Compute AES encryption on bitsliced data. Since input is stored on
1804 * eight 32-bit words, two block encryptions are actually performed
1805 * in parallel.
1806 */
1807 void br_aes_ct_bitslice_encrypt(unsigned num_rounds,
1808 const uint32_t *skey, uint32_t *q);
1809
1810 /*
1811 * Compute AES decryption on bitsliced data. Since input is stored on
1812 * eight 32-bit words, two block decryptions are actually performed
1813 * in parallel.
1814 */
1815 void br_aes_ct_bitslice_decrypt(unsigned num_rounds,
1816 const uint32_t *skey, uint32_t *q);
1817
1818 /*
1819 * AES key schedule, constant-time version. skey[] is filled with n+1
1820 * 128-bit subkeys, where n is the number of rounds (10 to 14, depending
1821 * on key size). The number of rounds is returned. If the key size is
1822 * invalid (not 16, 24 or 32), then 0 is returned.
1823 */
1824 unsigned br_aes_ct_keysched(uint32_t *comp_skey,
1825 const void *key, size_t key_len);
1826
1827 /*
1828 * Expand AES subkeys as produced by br_aes_ct_keysched(), into
1829 * a larger array suitable for br_aes_ct_bitslice_encrypt() and
1830 * br_aes_ct_bitslice_decrypt().
1831 */
1832 void br_aes_ct_skey_expand(uint32_t *skey,
1833 unsigned num_rounds, const uint32_t *comp_skey);
1834
1835 /*
1836 * For the ct64 implementation, the same bitslicing technique is used,
1837 * but four instances are interleaved. First instance uses bits 0, 4,
1838 * 8, 12,... of each word; second instance uses bits 1, 5, 9, 13,...
1839 * and so on.
1840 */
1841
1842 /*
1843 * Perform bytewise orthogonalization of eight 64-bit words. Bytes
1844 * of q0..q7 are spread over all words: for a byte x that occurs
1845 * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit
1846 * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j.
1847 *
1848 * This operation is an involution.
1849 */
1850 void br_aes_ct64_ortho(uint64_t *q);
1851
1852 /*
1853 * Interleave bytes for an AES input block. If input bytes are
1854 * denoted 0123456789ABCDEF, and have been decoded with little-endian
1855 * convention (w[0] contains 0123, with '3' being most significant;
1856 * w[1] contains 4567, and so on), then output word q0 will be
1857 * set to 08192A3B (again little-endian convention) and q1 will
1858 * be set to 4C5D6E7F.
1859 */
1860 void br_aes_ct64_interleave_in(uint64_t *q0, uint64_t *q1, const uint32_t *w);
1861
1862 /*
1863 * Perform the opposite of br_aes_ct64_interleave_in().
1864 */
1865 void br_aes_ct64_interleave_out(uint32_t *w, uint64_t q0, uint64_t q1);
1866
1867 /*
1868 * The AES S-box, as a bitsliced constant-time version. The input array
1869 * consists in eight 64-bit words; 64 S-box instances are computed in
1870 * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant)
1871 * are spread over the words 0 to 7, at the same rank.
1872 */
1873 void br_aes_ct64_bitslice_Sbox(uint64_t *q);
1874
1875 /*
1876 * Like br_aes_bitslice_Sbox(), but for the inverse S-box.
1877 */
1878 void br_aes_ct64_bitslice_invSbox(uint64_t *q);
1879
1880 /*
1881 * Compute AES encryption on bitsliced data. Since input is stored on
1882 * eight 64-bit words, four block encryptions are actually performed
1883 * in parallel.
1884 */
1885 void br_aes_ct64_bitslice_encrypt(unsigned num_rounds,
1886 const uint64_t *skey, uint64_t *q);
1887
1888 /*
1889 * Compute AES decryption on bitsliced data. Since input is stored on
1890 * eight 64-bit words, four block decryptions are actually performed
1891 * in parallel.
1892 */
1893 void br_aes_ct64_bitslice_decrypt(unsigned num_rounds,
1894 const uint64_t *skey, uint64_t *q);
1895
1896 /*
1897 * AES key schedule, constant-time version. skey[] is filled with n+1
1898 * 128-bit subkeys, where n is the number of rounds (10 to 14, depending
1899 * on key size). The number of rounds is returned. If the key size is
1900 * invalid (not 16, 24 or 32), then 0 is returned.
1901 */
1902 unsigned br_aes_ct64_keysched(uint64_t *comp_skey,
1903 const void *key, size_t key_len);
1904
1905 /*
1906 * Expand AES subkeys as produced by br_aes_ct64_keysched(), into
1907 * a larger array suitable for br_aes_ct64_bitslice_encrypt() and
1908 * br_aes_ct64_bitslice_decrypt().
1909 */
1910 void br_aes_ct64_skey_expand(uint64_t *skey,
1911 unsigned num_rounds, const uint64_t *comp_skey);
1912
1913 /*
1914 * Test support for AES-NI opcodes.
1915 */
1916 int br_aes_x86ni_supported(void);
1917
1918 /*
1919 * AES key schedule, using x86 AES-NI instructions. This yields the
1920 * subkeys in the encryption direction. Number of rounds is returned.
1921 * Key size MUST be 16, 24 or 32 bytes; otherwise, 0 is returned.
1922 */
1923 unsigned br_aes_x86ni_keysched_enc(unsigned char *skni,
1924 const void *key, size_t len);
1925
1926 /*
1927 * AES key schedule, using x86 AES-NI instructions. This yields the
1928 * subkeys in the decryption direction. Number of rounds is returned.
1929 * Key size MUST be 16, 24 or 32 bytes; otherwise, 0 is returned.
1930 */
1931 unsigned br_aes_x86ni_keysched_dec(unsigned char *skni,
1932 const void *key, size_t len);
1933
1934 /*
1935 * Test support for AES POWER8 opcodes.
1936 */
1937 int br_aes_pwr8_supported(void);
1938
1939 /*
1940 * AES key schedule, using POWER8 instructions. This yields the
1941 * subkeys in the encryption direction. Number of rounds is returned.
1942 * Key size MUST be 16, 24 or 32 bytes; otherwise, 0 is returned.
1943 */
1944 unsigned br_aes_pwr8_keysched(unsigned char *skni,
1945 const void *key, size_t len);
1946
1947 /* ==================================================================== */
1948 /*
1949 * RSA.
1950 */
1951
1952 /*
1953 * Apply proper PKCS#1 v1.5 padding (for signatures). 'hash_oid' is
1954 * the encoded hash function OID, or NULL.
1955 */
1956 uint32_t br_rsa_pkcs1_sig_pad(const unsigned char *hash_oid,
1957 const unsigned char *hash, size_t hash_len,
1958 uint32_t n_bitlen, unsigned char *x);
1959
1960 /*
1961 * Check PKCS#1 v1.5 padding (for signatures). 'hash_oid' is the encoded
1962 * hash function OID, or NULL. The provided 'sig' value is _after_ the
1963 * modular exponentiation, i.e. it should be the padded hash. On
1964 * success, the hashed message is extracted.
1965 */
1966 uint32_t br_rsa_pkcs1_sig_unpad(const unsigned char *sig, size_t sig_len,
1967 const unsigned char *hash_oid, size_t hash_len,
1968 unsigned char *hash_out);
1969
1970 /*
1971 * Apply proper PSS padding. The 'x' buffer is output only: it
1972 * receives the value that is to be exponentiated.
1973 */
1974 uint32_t br_rsa_pss_sig_pad(const br_prng_class **rng,
1975 const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
1976 const unsigned char *hash, size_t salt_len,
1977 uint32_t n_bitlen, unsigned char *x);
1978
1979 /*
1980 * Check PSS padding. The provided value is the one _after_
1981 * the modular exponentiation; it is modified by this function.
1982 * This function infers the signature length from the public key
1983 * size, i.e. it assumes that this has already been verified (as
1984 * part of the exponentiation).
1985 */
1986 uint32_t br_rsa_pss_sig_unpad(
1987 const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
1988 const unsigned char *hash, size_t salt_len,
1989 const br_rsa_public_key *pk, unsigned char *x);
1990
1991 /*
1992 * Apply OAEP padding. Returned value is the actual padded string length,
1993 * or zero on error.
1994 */
1995 size_t br_rsa_oaep_pad(const br_prng_class **rnd, const br_hash_class *dig,
1996 const void *label, size_t label_len, const br_rsa_public_key *pk,
1997 void *dst, size_t dst_nax_len, const void *src, size_t src_len);
1998
1999 /*
2000 * Unravel and check OAEP padding. If the padding is correct, then 1 is
2001 * returned, '*len' is adjusted to the length of the message, and the
2002 * data is moved to the start of the 'data' buffer. If the padding is
2003 * incorrect, then 0 is returned and '*len' is untouched. Either way,
2004 * the complete buffer contents are altered.
2005 */
2006 uint32_t br_rsa_oaep_unpad(const br_hash_class *dig,
2007 const void *label, size_t label_len, void *data, size_t *len);
2008
2009 /*
2010 * Compute MGF1 for a given seed, and XOR the output into the provided
2011 * buffer.
2012 */
2013 void br_mgf1_xor(void *data, size_t len,
2014 const br_hash_class *dig, const void *seed, size_t seed_len);
2015
2016 /*
2017 * Inner function for RSA key generation; used by the "i31" and "i62"
2018 * implementations.
2019 */
2020 uint32_t br_rsa_i31_keygen_inner(const br_prng_class **rng,
2021 br_rsa_private_key *sk, void *kbuf_priv,
2022 br_rsa_public_key *pk, void *kbuf_pub,
2023 unsigned size, uint32_t pubexp, br_i31_modpow_opt_type mp31);
2024
2025 /* ==================================================================== */
2026 /*
2027 * Elliptic curves.
2028 */
2029
2030 /*
2031 * Type for generic EC parameters: curve order (unsigned big-endian
2032 * encoding) and encoded conventional generator.
2033 */
2034 typedef struct {
2035 int curve;
2036 const unsigned char *order;
2037 size_t order_len;
2038 const unsigned char *generator;
2039 size_t generator_len;
2040 } br_ec_curve_def;
2041
2042 extern const br_ec_curve_def br_secp256r1;
2043 extern const br_ec_curve_def br_secp384r1;
2044 extern const br_ec_curve_def br_secp521r1;
2045
2046 /*
2047 * For Curve25519, the advertised "order" really is 2^255-1, since the
2048 * point multipliction function really works over arbitrary 255-bit
2049 * scalars. This value is only meant as a hint for ECDH key generation;
2050 * only ECDSA uses the exact curve order, and ECDSA is not used with
2051 * that specific curve.
2052 */
2053 extern const br_ec_curve_def br_curve25519;
2054
2055 /*
2056 * Decode some bytes as an i31 integer, with truncation (corresponding
2057 * to the 'bits2int' operation in RFC 6979). The target ENCODED bit
2058 * length is provided as last parameter. The resulting value will have
2059 * this declared bit length, and consists the big-endian unsigned decoding
2060 * of exactly that many bits in the source (capped at the source length).
2061 */
2062 void br_ecdsa_i31_bits2int(uint32_t *x,
2063 const void *src, size_t len, uint32_t ebitlen);
2064
2065 /*
2066 * Decode some bytes as an i15 integer, with truncation (corresponding
2067 * to the 'bits2int' operation in RFC 6979). The target ENCODED bit
2068 * length is provided as last parameter. The resulting value will have
2069 * this declared bit length, and consists the big-endian unsigned decoding
2070 * of exactly that many bits in the source (capped at the source length).
2071 */
2072 void br_ecdsa_i15_bits2int(uint16_t *x,
2073 const void *src, size_t len, uint32_t ebitlen);
2074
2075 /* ==================================================================== */
2076 /*
2077 * ASN.1 support functions.
2078 */
2079
2080 /*
2081 * A br_asn1_uint structure contains encoding information about an
2082 * INTEGER nonnegative value: pointer to the integer contents (unsigned
2083 * big-endian representation), length of the integer contents,
2084 * and length of the encoded value. The data shall have minimal length:
2085 * - If the integer value is zero, then 'len' must be zero.
2086 * - If the integer value is not zero, then data[0] must be non-zero.
2087 *
2088 * Under these conditions, 'asn1len' is necessarily equal to either len
2089 * or len+1.
2090 */
2091 typedef struct {
2092 const unsigned char *data;
2093 size_t len;
2094 size_t asn1len;
2095 } br_asn1_uint;
2096
2097 /*
2098 * Given an encoded integer (unsigned big-endian, with possible leading
2099 * bytes of value 0), returned the "prepared INTEGER" structure.
2100 */
2101 br_asn1_uint br_asn1_uint_prepare(const void *xdata, size_t xlen);
2102
2103 /*
2104 * Encode an ASN.1 length. The length of the encoded length is returned.
2105 * If 'dest' is NULL, then no encoding is performed, but the length of
2106 * the encoded length is still computed and returned.
2107 */
2108 size_t br_asn1_encode_length(void *dest, size_t len);
2109
2110 /*
2111 * Convenient macro for computing lengths of lengths.
2112 */
2113 #define len_of_len(len) br_asn1_encode_length(NULL, len)
2114
2115 /*
2116 * Encode a (prepared) ASN.1 INTEGER. The encoded length is returned.
2117 * If 'dest' is NULL, then no encoding is performed, but the length of
2118 * the encoded integer is still computed and returned.
2119 */
2120 size_t br_asn1_encode_uint(void *dest, br_asn1_uint pp);
2121
2122 /*
2123 * Get the OID that identifies an elliptic curve. Returned value is
2124 * the DER-encoded OID, with the length (always one byte) but without
2125 * the tag. Thus, the first byte of the returned buffer contains the
2126 * number of subsequent bytes in the value. If the curve is not
2127 * recognised, NULL is returned.
2128 */
2129 const unsigned char *br_get_curve_OID(int curve);
2130
2131 /*
2132 * Inner function for EC private key encoding. This is equivalent to
2133 * the API function br_encode_ec_raw_der(), except for an extra
2134 * parameter: if 'include_curve_oid' is zero, then the curve OID is
2135 * _not_ included in the output blob (this is for PKCS#8 support).
2136 */
2137 size_t br_encode_ec_raw_der_inner(void *dest,
2138 const br_ec_private_key *sk, const br_ec_public_key *pk,
2139 int include_curve_oid);
2140
2141 /* ==================================================================== */
2142 /*
2143 * SSL/TLS support functions.
2144 */
2145
2146 /*
2147 * Record types.
2148 */
2149 #define BR_SSL_CHANGE_CIPHER_SPEC 20
2150 #define BR_SSL_ALERT 21
2151 #define BR_SSL_HANDSHAKE 22
2152 #define BR_SSL_APPLICATION_DATA 23
2153
2154 /*
2155 * Handshake message types.
2156 */
2157 #define BR_SSL_HELLO_REQUEST 0
2158 #define BR_SSL_CLIENT_HELLO 1
2159 #define BR_SSL_SERVER_HELLO 2
2160 #define BR_SSL_CERTIFICATE 11
2161 #define BR_SSL_SERVER_KEY_EXCHANGE 12
2162 #define BR_SSL_CERTIFICATE_REQUEST 13
2163 #define BR_SSL_SERVER_HELLO_DONE 14
2164 #define BR_SSL_CERTIFICATE_VERIFY 15
2165 #define BR_SSL_CLIENT_KEY_EXCHANGE 16
2166 #define BR_SSL_FINISHED 20
2167
2168 /*
2169 * Alert levels.
2170 */
2171 #define BR_LEVEL_WARNING 1
2172 #define BR_LEVEL_FATAL 2
2173
2174 /*
2175 * Low-level I/O state.
2176 */
2177 #define BR_IO_FAILED 0
2178 #define BR_IO_IN 1
2179 #define BR_IO_OUT 2
2180 #define BR_IO_INOUT 3
2181
2182 /*
2183 * Mark a SSL engine as failed. The provided error code is recorded if
2184 * the engine was not already marked as failed. If 'err' is 0, then the
2185 * engine is marked as closed (without error).
2186 */
2187 void br_ssl_engine_fail(br_ssl_engine_context *cc, int err);
2188
2189 /*
2190 * Test whether the engine is closed (normally or as a failure).
2191 */
2192 static inline int
2193 br_ssl_engine_closed(const br_ssl_engine_context *cc)
2194 {
2195 return cc->iomode == BR_IO_FAILED;
2196 }
2197
2198 /*
2199 * Configure a new maximum fragment length. If possible, the maximum
2200 * length for outgoing records is immediately adjusted (if there are
2201 * not already too many buffered bytes for that).
2202 */
2203 void br_ssl_engine_new_max_frag_len(
2204 br_ssl_engine_context *rc, unsigned max_frag_len);
2205
2206 /*
2207 * Test whether the current incoming record has been fully received
2208 * or not. This functions returns 0 only if a complete record header
2209 * has been received, but some of the (possibly encrypted) payload
2210 * has not yet been obtained.
2211 */
2212 int br_ssl_engine_recvrec_finished(const br_ssl_engine_context *rc);
2213
2214 /*
2215 * Flush the current record (if not empty). This is meant to be called
2216 * from the handshake processor only.
2217 */
2218 void br_ssl_engine_flush_record(br_ssl_engine_context *cc);
2219
2220 /*
2221 * Test whether there is some accumulated payload to send.
2222 */
2223 static inline int
2224 br_ssl_engine_has_pld_to_send(const br_ssl_engine_context *rc)
2225 {
2226 return rc->oxa != rc->oxb && rc->oxa != rc->oxc;
2227 }
2228
2229 /*
2230 * Initialize RNG in engine. Returned value is 1 on success, 0 on error.
2231 * This function will try to use the OS-provided RNG, if available. If
2232 * there is no OS-provided RNG, or if it failed, and no entropy was
2233 * injected by the caller, then a failure will be reported. On error,
2234 * the context error code is set.
2235 */
2236 int br_ssl_engine_init_rand(br_ssl_engine_context *cc);
2237
2238 /*
2239 * Reset the handshake-related parts of the engine.
2240 */
2241 void br_ssl_engine_hs_reset(br_ssl_engine_context *cc,
2242 void (*hsinit)(void *), void (*hsrun)(void *));
2243
2244 /*
2245 * Get the PRF to use for this context, for the provided PRF hash
2246 * function ID.
2247 */
2248 br_tls_prf_impl br_ssl_engine_get_PRF(br_ssl_engine_context *cc, int prf_id);
2249
2250 /*
2251 * Consume the provided pre-master secret and compute the corresponding
2252 * master secret. The 'prf_id' is the ID of the hash function to use
2253 * with the TLS 1.2 PRF (ignored if the version is TLS 1.0 or 1.1).
2254 */
2255 void br_ssl_engine_compute_master(br_ssl_engine_context *cc,
2256 int prf_id, const void *pms, size_t len);
2257
2258 /*
2259 * Switch to CBC decryption for incoming records.
2260 * cc the engine context
2261 * is_client non-zero for a client, zero for a server
2262 * prf_id id of hash function for PRF (ignored if not TLS 1.2+)
2263 * mac_id id of hash function for HMAC
2264 * bc_impl block cipher implementation (CBC decryption)
2265 * cipher_key_len block cipher key length (in bytes)
2266 */
2267 void br_ssl_engine_switch_cbc_in(br_ssl_engine_context *cc,
2268 int is_client, int prf_id, int mac_id,
2269 const br_block_cbcdec_class *bc_impl, size_t cipher_key_len);
2270
2271 /*
2272 * Switch to CBC encryption for outgoing records.
2273 * cc the engine context
2274 * is_client non-zero for a client, zero for a server
2275 * prf_id id of hash function for PRF (ignored if not TLS 1.2+)
2276 * mac_id id of hash function for HMAC
2277 * bc_impl block cipher implementation (CBC encryption)
2278 * cipher_key_len block cipher key length (in bytes)
2279 */
2280 void br_ssl_engine_switch_cbc_out(br_ssl_engine_context *cc,
2281 int is_client, int prf_id, int mac_id,
2282 const br_block_cbcenc_class *bc_impl, size_t cipher_key_len);
2283
2284 /*
2285 * Switch to GCM decryption for incoming records.
2286 * cc the engine context
2287 * is_client non-zero for a client, zero for a server
2288 * prf_id id of hash function for PRF
2289 * bc_impl block cipher implementation (CTR)
2290 * cipher_key_len block cipher key length (in bytes)
2291 */
2292 void br_ssl_engine_switch_gcm_in(br_ssl_engine_context *cc,
2293 int is_client, int prf_id,
2294 const br_block_ctr_class *bc_impl, size_t cipher_key_len);
2295
2296 /*
2297 * Switch to GCM encryption for outgoing records.
2298 * cc the engine context
2299 * is_client non-zero for a client, zero for a server
2300 * prf_id id of hash function for PRF
2301 * bc_impl block cipher implementation (CTR)
2302 * cipher_key_len block cipher key length (in bytes)
2303 */
2304 void br_ssl_engine_switch_gcm_out(br_ssl_engine_context *cc,
2305 int is_client, int prf_id,
2306 const br_block_ctr_class *bc_impl, size_t cipher_key_len);
2307
2308 /*
2309 * Switch to ChaCha20+Poly1305 decryption for incoming records.
2310 * cc the engine context
2311 * is_client non-zero for a client, zero for a server
2312 * prf_id id of hash function for PRF
2313 */
2314 void br_ssl_engine_switch_chapol_in(br_ssl_engine_context *cc,
2315 int is_client, int prf_id);
2316
2317 /*
2318 * Switch to ChaCha20+Poly1305 encryption for outgoing records.
2319 * cc the engine context
2320 * is_client non-zero for a client, zero for a server
2321 * prf_id id of hash function for PRF
2322 */
2323 void br_ssl_engine_switch_chapol_out(br_ssl_engine_context *cc,
2324 int is_client, int prf_id);
2325
2326 /*
2327 * Switch to CCM decryption for incoming records.
2328 * cc the engine context
2329 * is_client non-zero for a client, zero for a server
2330 * prf_id id of hash function for PRF
2331 * bc_impl block cipher implementation (CTR+CBC)
2332 * cipher_key_len block cipher key length (in bytes)
2333 * tag_len tag length (in bytes)
2334 */
2335 void br_ssl_engine_switch_ccm_in(br_ssl_engine_context *cc,
2336 int is_client, int prf_id,
2337 const br_block_ctrcbc_class *bc_impl,
2338 size_t cipher_key_len, size_t tag_len);
2339
2340 /*
2341 * Switch to GCM encryption for outgoing records.
2342 * cc the engine context
2343 * is_client non-zero for a client, zero for a server
2344 * prf_id id of hash function for PRF
2345 * bc_impl block cipher implementation (CTR+CBC)
2346 * cipher_key_len block cipher key length (in bytes)
2347 * tag_len tag length (in bytes)
2348 */
2349 void br_ssl_engine_switch_ccm_out(br_ssl_engine_context *cc,
2350 int is_client, int prf_id,
2351 const br_block_ctrcbc_class *bc_impl,
2352 size_t cipher_key_len, size_t tag_len);
2353
2354 /*
2355 * Calls to T0-generated code.
2356 */
2357 void br_ssl_hs_client_init_main(void *ctx);
2358 void br_ssl_hs_client_run(void *ctx);
2359 void br_ssl_hs_server_init_main(void *ctx);
2360 void br_ssl_hs_server_run(void *ctx);
2361
2362 /*
2363 * Get the hash function to use for signatures, given a bit mask of
2364 * supported hash functions. This implements a strict choice order
2365 * (namely SHA-256, SHA-384, SHA-512, SHA-224, SHA-1). If the mask
2366 * does not document support of any of these hash functions, then this
2367 * functions returns 0.
2368 */
2369 int br_ssl_choose_hash(unsigned bf);
2370
2371 /* ==================================================================== */
2372
2373 /*
2374 * PowerPC / POWER assembly stuff. The special BR_POWER_ASM_MACROS macro
2375 * must be defined before including this file; this is done by source
2376 * files that use some inline assembly for PowerPC / POWER machines.
2377 */
2378
2379 #if BR_POWER_ASM_MACROS
2380
2381 #define lxvw4x(xt, ra, rb) lxvw4x_(xt, ra, rb)
2382 #define stxvw4x(xt, ra, rb) stxvw4x_(xt, ra, rb)
2383
2384 #define bdnz(foo) bdnz_(foo)
2385 #define bdz(foo) bdz_(foo)
2386 #define beq(foo) beq_(foo)
2387
2388 #define li(rx, value) li_(rx, value)
2389 #define addi(rx, ra, imm) addi_(rx, ra, imm)
2390 #define cmpldi(rx, imm) cmpldi_(rx, imm)
2391 #define mtctr(rx) mtctr_(rx)
2392 #define vspltb(vrt, vrb, uim) vspltb_(vrt, vrb, uim)
2393 #define vspltw(vrt, vrb, uim) vspltw_(vrt, vrb, uim)
2394 #define vspltisb(vrt, imm) vspltisb_(vrt, imm)
2395 #define vspltisw(vrt, imm) vspltisw_(vrt, imm)
2396 #define vrlw(vrt, vra, vrb) vrlw_(vrt, vra, vrb)
2397 #define vsbox(vrt, vra) vsbox_(vrt, vra)
2398 #define vxor(vrt, vra, vrb) vxor_(vrt, vra, vrb)
2399 #define vand(vrt, vra, vrb) vand_(vrt, vra, vrb)
2400 #define vsro(vrt, vra, vrb) vsro_(vrt, vra, vrb)
2401 #define vsl(vrt, vra, vrb) vsl_(vrt, vra, vrb)
2402 #define vsldoi(vt, va, vb, sh) vsldoi_(vt, va, vb, sh)
2403 #define vsr(vrt, vra, vrb) vsr_(vrt, vra, vrb)
2404 #define vaddcuw(vrt, vra, vrb) vaddcuw_(vrt, vra, vrb)
2405 #define vadduwm(vrt, vra, vrb) vadduwm_(vrt, vra, vrb)
2406 #define vsububm(vrt, vra, vrb) vsububm_(vrt, vra, vrb)
2407 #define vsubuwm(vrt, vra, vrb) vsubuwm_(vrt, vra, vrb)
2408 #define vsrw(vrt, vra, vrb) vsrw_(vrt, vra, vrb)
2409 #define vcipher(vt, va, vb) vcipher_(vt, va, vb)
2410 #define vcipherlast(vt, va, vb) vcipherlast_(vt, va, vb)
2411 #define vncipher(vt, va, vb) vncipher_(vt, va, vb)
2412 #define vncipherlast(vt, va, vb) vncipherlast_(vt, va, vb)
2413 #define vperm(vt, va, vb, vc) vperm_(vt, va, vb, vc)
2414 #define vpmsumd(vt, va, vb) vpmsumd_(vt, va, vb)
2415 #define xxpermdi(vt, va, vb, d) xxpermdi_(vt, va, vb, d)
2416
2417 #define lxvw4x_(xt, ra, rb) "\tlxvw4x\t" #xt "," #ra "," #rb "\n"
2418 #define stxvw4x_(xt, ra, rb) "\tstxvw4x\t" #xt "," #ra "," #rb "\n"
2419
2420 #define label(foo) #foo "%=:\n"
2421 #define bdnz_(foo) "\tbdnz\t" #foo "%=\n"
2422 #define bdz_(foo) "\tbdz\t" #foo "%=\n"
2423 #define beq_(foo) "\tbeq\t" #foo "%=\n"
2424
2425 #define li_(rx, value) "\tli\t" #rx "," #value "\n"
2426 #define addi_(rx, ra, imm) "\taddi\t" #rx "," #ra "," #imm "\n"
2427 #define cmpldi_(rx, imm) "\tcmpldi\t" #rx "," #imm "\n"
2428 #define mtctr_(rx) "\tmtctr\t" #rx "\n"
2429 #define vspltb_(vrt, vrb, uim) "\tvspltb\t" #vrt "," #vrb "," #uim "\n"
2430 #define vspltw_(vrt, vrb, uim) "\tvspltw\t" #vrt "," #vrb "," #uim "\n"
2431 #define vspltisb_(vrt, imm) "\tvspltisb\t" #vrt "," #imm "\n"
2432 #define vspltisw_(vrt, imm) "\tvspltisw\t" #vrt "," #imm "\n"
2433 #define vrlw_(vrt, vra, vrb) "\tvrlw\t" #vrt "," #vra "," #vrb "\n"
2434 #define vsbox_(vrt, vra) "\tvsbox\t" #vrt "," #vra "\n"
2435 #define vxor_(vrt, vra, vrb) "\tvxor\t" #vrt "," #vra "," #vrb "\n"
2436 #define vand_(vrt, vra, vrb) "\tvand\t" #vrt "," #vra "," #vrb "\n"
2437 #define vsro_(vrt, vra, vrb) "\tvsro\t" #vrt "," #vra "," #vrb "\n"
2438 #define vsl_(vrt, vra, vrb) "\tvsl\t" #vrt "," #vra "," #vrb "\n"
2439 #define vsldoi_(vt, va, vb, sh) "\tvsldoi\t" #vt "," #va "," #vb "," #sh "\n"
2440 #define vsr_(vrt, vra, vrb) "\tvsr\t" #vrt "," #vra "," #vrb "\n"
2441 #define vaddcuw_(vrt, vra, vrb) "\tvaddcuw\t" #vrt "," #vra "," #vrb "\n"
2442 #define vadduwm_(vrt, vra, vrb) "\tvadduwm\t" #vrt "," #vra "," #vrb "\n"
2443 #define vsububm_(vrt, vra, vrb) "\tvsububm\t" #vrt "," #vra "," #vrb "\n"
2444 #define vsubuwm_(vrt, vra, vrb) "\tvsubuwm\t" #vrt "," #vra "," #vrb "\n"
2445 #define vsrw_(vrt, vra, vrb) "\tvsrw\t" #vrt "," #vra "," #vrb "\n"
2446 #define vcipher_(vt, va, vb) "\tvcipher\t" #vt "," #va "," #vb "\n"
2447 #define vcipherlast_(vt, va, vb) "\tvcipherlast\t" #vt "," #va "," #vb "\n"
2448 #define vncipher_(vt, va, vb) "\tvncipher\t" #vt "," #va "," #vb "\n"
2449 #define vncipherlast_(vt, va, vb) "\tvncipherlast\t" #vt "," #va "," #vb "\n"
2450 #define vperm_(vt, va, vb, vc) "\tvperm\t" #vt "," #va "," #vb "," #vc "\n"
2451 #define vpmsumd_(vt, va, vb) "\tvpmsumd\t" #vt "," #va "," #vb "\n"
2452 #define xxpermdi_(vt, va, vb, d) "\txxpermdi\t" #vt "," #va "," #vb "," #d "\n"
2453
2454 #endif
2455
2456 /* ==================================================================== */
2457 /*
2458 * Special "activate intrinsics" code, needed for some compiler versions.
2459 * This is defined at the end of this file, so that it won't impact any
2460 * of the inline functions defined previously; and it is controlled by
2461 * a specific macro defined in the caller code.
2462 *
2463 * Calling code conventions:
2464 *
2465 * - Caller must define BR_ENABLE_INTRINSICS before including "inner.h".
2466 * - Functions that use intrinsics must be enclosed in an "enabled"
2467 * region (between BR_TARGETS_X86_UP and BR_TARGETS_X86_DOWN).
2468 * - Functions that use intrinsics must be tagged with the appropriate
2469 * BR_TARGET().
2470 */
2471
2472 #if BR_ENABLE_INTRINSICS && (BR_GCC_4_4 || BR_CLANG_3_7 || BR_MSC_2005)
2473
2474 /*
2475 * x86 intrinsics (both 32-bit and 64-bit).
2476 */
2477 #if BR_i386 || BR_amd64
2478
2479 /*
2480 * On GCC before version 5.0, we need to use the pragma to enable the
2481 * target options globally, because the 'target' function attribute
2482 * appears to be unreliable. Before 4.6 we must also avoid the
2483 * push_options / pop_options mechanism, because it tends to trigger
2484 * some internal compiler errors.
2485 */
2486 #if BR_GCC && !BR_GCC_5_0
2487 #if BR_GCC_4_6
2488 #define BR_TARGETS_X86_UP \
2489 _Pragma("GCC push_options") \
2490 _Pragma("GCC target(\"sse2,ssse3,sse4.1,aes,pclmul,rdrnd\")")
2491 #define BR_TARGETS_X86_DOWN \
2492 _Pragma("GCC pop_options")
2493 #else
2494 #define BR_TARGETS_X86_UP \
2495 _Pragma("GCC target(\"sse2,ssse3,sse4.1,aes,pclmul\")")
2496 #define BR_TARGETS_X86_DOWN
2497 #endif
2498 #pragma GCC diagnostic ignored "-Wpsabi"
2499 #endif
2500
2501 #if BR_CLANG && !BR_CLANG_3_8
2502 #undef __SSE2__
2503 #undef __SSE3__
2504 #undef __SSSE3__
2505 #undef __SSE4_1__
2506 #undef __AES__
2507 #undef __PCLMUL__
2508 #undef __RDRND__
2509 #define __SSE2__ 1
2510 #define __SSE3__ 1
2511 #define __SSSE3__ 1
2512 #define __SSE4_1__ 1
2513 #define __AES__ 1
2514 #define __PCLMUL__ 1
2515 #define __RDRND__ 1
2516 #endif
2517
2518 #ifndef BR_TARGETS_X86_UP
2519 #define BR_TARGETS_X86_UP
2520 #endif
2521 #ifndef BR_TARGETS_X86_DOWN
2522 #define BR_TARGETS_X86_DOWN
2523 #endif
2524
2525 #if BR_GCC || BR_CLANG
2526 BR_TARGETS_X86_UP
2527 #include <x86intrin.h>
2528 #include <cpuid.h>
2529 #define br_bswap32 __builtin_bswap32
2530 BR_TARGETS_X86_DOWN
2531 #endif
2532
2533 #if BR_MSC
2534 #include <stdlib.h>
2535 #include <intrin.h>
2536 #include <immintrin.h>
2537 #define br_bswap32 _byteswap_ulong
2538 #endif
2539
2540 static inline int
2541 br_cpuid(uint32_t mask_eax, uint32_t mask_ebx,
2542 uint32_t mask_ecx, uint32_t mask_edx)
2543 {
2544 #if BR_GCC || BR_CLANG
2545 unsigned eax, ebx, ecx, edx;
2546
2547 if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
2548 if ((eax & mask_eax) == mask_eax
2549 && (ebx & mask_ebx) == mask_ebx
2550 && (ecx & mask_ecx) == mask_ecx
2551 && (edx & mask_edx) == mask_edx)
2552 {
2553 return 1;
2554 }
2555 }
2556 #elif BR_MSC
2557 int info[4];
2558
2559 __cpuid(info, 1);
2560 if (((uint32_t)info[0] & mask_eax) == mask_eax
2561 && ((uint32_t)info[1] & mask_ebx) == mask_ebx
2562 && ((uint32_t)info[2] & mask_ecx) == mask_ecx
2563 && ((uint32_t)info[3] & mask_edx) == mask_edx)
2564 {
2565 return 1;
2566 }
2567 #endif
2568 return 0;
2569 }
2570
2571 #endif
2572
2573 #endif
2574
2575 /* ==================================================================== */
2576
2577 #endif