* random masking, but "true" constant-time code.
*
* - They support only private keys with two prime factors. RSA private
- * key with three or more prime factors are nominally supported, but
+ * keys with three or more prime factors are nominally supported, but
* rarely used; they may offer faster operations, at the expense of
* more code and potentially a reduction in security if there are
* "too many" prime factors.
* - The public exponent may have arbitrary length. Of course, it is
* a good idea to keep public exponents small, so that public key
* operations are fast; but, contrary to some widely deployed
- * implementations, BearSSL has no problem with public exponent
+ * implementations, BearSSL has no problem with public exponents
* longer than 32 bits.
*
* - The two prime factors of the modulus need not have the same length
/**
* \brief RSA private key.
*
- * The structure references the primvate factors, reduced private
+ * The structure references the private factors, reduced private
* exponents, and CRT coefficient. It also contains the bit length of
* the modulus. The big integers use unsigned big-endian representation;
* extra leading bytes of value 0 are allowed. However, the modulus bit
const br_hash_class *dig, const void *label, size_t label_len,
const br_rsa_private_key *sk, void *data, size_t *len);
+/**
+ * \brief Get buffer size to hold RSA private key elements.
+ *
+ * This macro returns the length (in bytes) of the buffer needed to
+ * receive the elements of a RSA private key, as generated by one of
+ * the `br_rsa_*_keygen()` functions. If the provided size is a constant
+ * expression, then the whole macro evaluates to a constant expression.
+ *
+ * \param size target key size (modulus size, in bits)
+ * \return the length of the private key buffer, in bytes.
+ */
+#define BR_RSA_KBUF_PRIV_SIZE(size) (5 * (((size) + 15) >> 4))
+
+/**
+ * \brief Get buffer size to hold RSA public key elements.
+ *
+ * This macro returns the length (in bytes) of the buffer needed to
+ * receive the elements of a RSA public key, as generated by one of
+ * the `br_rsa_*_keygen()` functions. If the provided size is a constant
+ * expression, then the whole macro evaluates to a constant expression.
+ *
+ * \param size target key size (modulus size, in bits)
+ * \return the length of the public key buffer, in bytes.
+ */
+#define BR_RSA_KBUF_PUB_SIZE(size) (4 + (((size) + 7) >> 3))
+
+/**
+ * \brief Type for RSA key pair generator implementation.
+ *
+ * This function generates a new RSA key pair whose modulus has bit
+ * length `size` bits. The private key elements are written in the
+ * `kbuf_priv` buffer, and pointer values and length fields to these
+ * elements are populated in the provided private key structure `sk`.
+ * Similarly, the public key elements are written in `kbuf_pub`, with
+ * pointers and lengths set in `pk`.
+ *
+ * If `sk` is `NULL`, then `kbuf_pub` may be `NULL`, and only the
+ * private key is set.
+ *
+ * If `pubexp` is not zero, then its value will be used as public
+ * exponent. Valid RSA public exponent values are odd integers
+ * greater than 1. If `pubexp` is zero, then the public exponent will
+ * have value 3.
+ *
+ * The provided PRNG (`rng_ctx`) must have already been initialized
+ * and seeded.
+ *
+ * Returned value is 1 on success, 0 on error. An error is reported
+ * if the requested range is outside of the supported key sizes, or
+ * if an invalid non-zero public exponent value is provided. Supported
+ * range starts at 512 bits, and up to an implementation-defined
+ * maximum (by default 4096 bits). Note that key sizes up to 768 bits
+ * have been broken in practice, and sizes lower than 2048 bits are
+ * usually considered to be weak and should not be used.
+ *
+ * \param rng_ctx source PRNG context (already initialized)
+ * \param sk RSA private key structure (destination)
+ * \param kbuf_priv buffer for private key elements
+ * \param pk RSA public key structure (destination), or `NULL`
+ * \param kbuf_pub buffer for public key elements, or `NULL`
+ * \param size target RSA modulus size (in bits)
+ * \param pubexp public exponent to use, or zero
+ * \return 1 on success, 0 on error (invalid parameters)
+ */
+typedef uint32_t (*br_rsa_keygen)(
+ const br_prng_class **rng_ctx,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp);
+
+/**
+ * \brief RSA key pair generation with the "i15" engine.
+ *
+ * \see br_rsa_keygen
+ *
+ * \param rng_ctx source PRNG context (already initialized)
+ * \param sk RSA private key structure (destination)
+ * \param kbuf_priv buffer for private key elements
+ * \param pk RSA public key structure (destination), or `NULL`
+ * \param kbuf_pub buffer for public key elements, or `NULL`
+ * \param size target RSA modulus size (in bits)
+ * \param pubexp public exponent to use, or zero
+ * \return 1 on success, 0 on error (invalid parameters)
+ */
+uint32_t br_rsa_i15_keygen(
+ const br_prng_class **rng_ctx,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp);
+
+/**
+ * \brief RSA key pair generation with the "i31" engine.
+ *
+ * \see br_rsa_keygen
+ *
+ * \param rng_ctx source PRNG context (already initialized)
+ * \param sk RSA private key structure (destination)
+ * \param kbuf_priv buffer for private key elements
+ * \param pk RSA public key structure (destination), or `NULL`
+ * \param kbuf_pub buffer for public key elements, or `NULL`
+ * \param size target RSA modulus size (in bits)
+ * \param pubexp public exponent to use, or zero
+ * \return 1 on success, 0 on error (invalid parameters)
+ */
+uint32_t br_rsa_i31_keygen(
+ const br_prng_class **rng_ctx,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp);
+
+/**
+ * \brief RSA key pair generation with the "i62" engine.
+ *
+ * This function is defined only on architecture that offer a 64x64->128
+ * opcode. Use `br_rsa_i62_keygen_get()` to dynamically obtain a pointer
+ * to that function.
+ *
+ * \see br_rsa_keygen
+ *
+ * \param rng_ctx source PRNG context (already initialized)
+ * \param sk RSA private key structure (destination)
+ * \param kbuf_priv buffer for private key elements
+ * \param pk RSA public key structure (destination), or `NULL`
+ * \param kbuf_pub buffer for public key elements, or `NULL`
+ * \param size target RSA modulus size (in bits)
+ * \param pubexp public exponent to use, or zero
+ * \return 1 on success, 0 on error (invalid parameters)
+ */
+uint32_t br_rsa_i62_keygen(
+ const br_prng_class **rng_ctx,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp);
+
+/**
+ * \brief Get the RSA "i62" implementation (key pair generation),
+ * if available.
+ *
+ * \return the implementation, or 0.
+ */
+br_rsa_keygen br_rsa_i62_keygen_get(void);
+
+/**
+ * \brief Get "default" RSA implementation (key pair generation).
+ *
+ * This returns the preferred implementation of RSA (key pair generation)
+ * on the current system.
+ *
+ * \return the default implementation.
+ */
+br_rsa_keygen br_rsa_keygen_get_default(void);
+
#ifdef __cplusplus
}
#endif
$(OBJDIR)$Pi15_encode$O \
$(OBJDIR)$Pi15_fmont$O \
$(OBJDIR)$Pi15_iszero$O \
+ $(OBJDIR)$Pi15_moddiv$O \
$(OBJDIR)$Pi15_modpow$O \
$(OBJDIR)$Pi15_modpow2$O \
$(OBJDIR)$Pi15_montmul$O \
$(OBJDIR)$Pi31_encode$O \
$(OBJDIR)$Pi31_fmont$O \
$(OBJDIR)$Pi31_iszero$O \
+ $(OBJDIR)$Pi31_moddiv$O \
$(OBJDIR)$Pi31_modpow$O \
$(OBJDIR)$Pi31_modpow2$O \
$(OBJDIR)$Pi31_montmul$O \
$(OBJDIR)$Phmac_ct$O \
$(OBJDIR)$Phmac_drbg$O \
$(OBJDIR)$Psysrng$O \
+ $(OBJDIR)$Prsa_default_keygen$O \
$(OBJDIR)$Prsa_default_oaep_decrypt$O \
$(OBJDIR)$Prsa_default_oaep_encrypt$O \
$(OBJDIR)$Prsa_default_pkcs1_sign$O \
$(OBJDIR)$Prsa_default_pkcs1_vrfy$O \
$(OBJDIR)$Prsa_default_priv$O \
$(OBJDIR)$Prsa_default_pub$O \
+ $(OBJDIR)$Prsa_i15_keygen$O \
$(OBJDIR)$Prsa_i15_oaep_decrypt$O \
$(OBJDIR)$Prsa_i15_oaep_encrypt$O \
$(OBJDIR)$Prsa_i15_pkcs1_sign$O \
$(OBJDIR)$Prsa_i15_pkcs1_vrfy$O \
$(OBJDIR)$Prsa_i15_priv$O \
$(OBJDIR)$Prsa_i15_pub$O \
+ $(OBJDIR)$Prsa_i31_keygen$O \
+ $(OBJDIR)$Prsa_i31_keygen_inner$O \
$(OBJDIR)$Prsa_i31_oaep_decrypt$O \
$(OBJDIR)$Prsa_i31_oaep_encrypt$O \
$(OBJDIR)$Prsa_i31_pkcs1_sign$O \
$(OBJDIR)$Prsa_i32_pkcs1_vrfy$O \
$(OBJDIR)$Prsa_i32_priv$O \
$(OBJDIR)$Prsa_i32_pub$O \
+ $(OBJDIR)$Prsa_i62_keygen$O \
$(OBJDIR)$Prsa_i62_oaep_decrypt$O \
$(OBJDIR)$Prsa_i62_oaep_encrypt$O \
$(OBJDIR)$Prsa_i62_pkcs1_sign$O \
$(OBJDIR)$Pi15_iszero$O: src$Pint$Pi15_iszero.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pi15_iszero$O src$Pint$Pi15_iszero.c
+$(OBJDIR)$Pi15_moddiv$O: src$Pint$Pi15_moddiv.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pi15_moddiv$O src$Pint$Pi15_moddiv.c
+
$(OBJDIR)$Pi15_modpow$O: src$Pint$Pi15_modpow.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pi15_modpow$O src$Pint$Pi15_modpow.c
$(OBJDIR)$Pi31_iszero$O: src$Pint$Pi31_iszero.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pi31_iszero$O src$Pint$Pi31_iszero.c
+$(OBJDIR)$Pi31_moddiv$O: src$Pint$Pi31_moddiv.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pi31_moddiv$O src$Pint$Pi31_moddiv.c
+
$(OBJDIR)$Pi31_modpow$O: src$Pint$Pi31_modpow.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pi31_modpow$O src$Pint$Pi31_modpow.c
$(OBJDIR)$Psysrng$O: src$Prand$Psysrng.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Psysrng$O src$Prand$Psysrng.c
+$(OBJDIR)$Prsa_default_keygen$O: src$Prsa$Prsa_default_keygen.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_default_keygen$O src$Prsa$Prsa_default_keygen.c
+
$(OBJDIR)$Prsa_default_oaep_decrypt$O: src$Prsa$Prsa_default_oaep_decrypt.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_default_oaep_decrypt$O src$Prsa$Prsa_default_oaep_decrypt.c
$(OBJDIR)$Prsa_default_pub$O: src$Prsa$Prsa_default_pub.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_default_pub$O src$Prsa$Prsa_default_pub.c
+$(OBJDIR)$Prsa_i15_keygen$O: src$Prsa$Prsa_i15_keygen.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i15_keygen$O src$Prsa$Prsa_i15_keygen.c
+
$(OBJDIR)$Prsa_i15_oaep_decrypt$O: src$Prsa$Prsa_i15_oaep_decrypt.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i15_oaep_decrypt$O src$Prsa$Prsa_i15_oaep_decrypt.c
$(OBJDIR)$Prsa_i15_pub$O: src$Prsa$Prsa_i15_pub.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i15_pub$O src$Prsa$Prsa_i15_pub.c
+$(OBJDIR)$Prsa_i31_keygen$O: src$Prsa$Prsa_i31_keygen.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i31_keygen$O src$Prsa$Prsa_i31_keygen.c
+
+$(OBJDIR)$Prsa_i31_keygen_inner$O: src$Prsa$Prsa_i31_keygen_inner.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i31_keygen_inner$O src$Prsa$Prsa_i31_keygen_inner.c
+
$(OBJDIR)$Prsa_i31_oaep_decrypt$O: src$Prsa$Prsa_i31_oaep_decrypt.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i31_oaep_decrypt$O src$Prsa$Prsa_i31_oaep_decrypt.c
$(OBJDIR)$Prsa_i32_pub$O: src$Prsa$Prsa_i32_pub.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i32_pub$O src$Prsa$Prsa_i32_pub.c
+$(OBJDIR)$Prsa_i62_keygen$O: src$Prsa$Prsa_i62_keygen.c $(HEADERSPRIV)
+ $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i62_keygen$O src$Prsa$Prsa_i62_keygen.c
+
$(OBJDIR)$Prsa_i62_oaep_decrypt$O: src$Prsa$Prsa_i62_oaep_decrypt.c $(HEADERSPRIV)
$(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Prsa_i62_oaep_decrypt$O src$Prsa$Prsa_i62_oaep_decrypt.c
src/int/i15_encode.c \
src/int/i15_fmont.c \
src/int/i15_iszero.c \
+ src/int/i15_moddiv.c \
src/int/i15_modpow.c \
src/int/i15_modpow2.c \
src/int/i15_montmul.c \
src/int/i31_encode.c \
src/int/i31_fmont.c \
src/int/i31_iszero.c \
+ src/int/i31_moddiv.c \
src/int/i31_modpow.c \
src/int/i31_modpow2.c \
src/int/i31_montmul.c \
src/mac/hmac_ct.c \
src/rand/hmac_drbg.c \
src/rand/sysrng.c \
+ src/rsa/rsa_default_keygen.c \
src/rsa/rsa_default_oaep_decrypt.c \
src/rsa/rsa_default_oaep_encrypt.c \
src/rsa/rsa_default_pkcs1_sign.c \
src/rsa/rsa_default_pkcs1_vrfy.c \
src/rsa/rsa_default_priv.c \
src/rsa/rsa_default_pub.c \
+ src/rsa/rsa_i15_keygen.c \
src/rsa/rsa_i15_oaep_decrypt.c \
src/rsa/rsa_i15_oaep_encrypt.c \
src/rsa/rsa_i15_pkcs1_sign.c \
src/rsa/rsa_i15_pkcs1_vrfy.c \
src/rsa/rsa_i15_priv.c \
src/rsa/rsa_i15_pub.c \
+ src/rsa/rsa_i31_keygen.c \
+ src/rsa/rsa_i31_keygen_inner.c \
src/rsa/rsa_i31_oaep_decrypt.c \
src/rsa/rsa_i31_oaep_encrypt.c \
src/rsa/rsa_i31_pkcs1_sign.c \
src/rsa/rsa_i32_pkcs1_vrfy.c \
src/rsa/rsa_i32_priv.c \
src/rsa/rsa_i32_pub.c \
+ src/rsa/rsa_i62_keygen.c \
src/rsa/rsa_i62_oaep_decrypt.c \
src/rsa/rsa_i62_oaep_encrypt.c \
src/rsa/rsa_i62_pkcs1_sign.c \
* already set their root keys to RSA-4096, so we should be able to
* process such keys.
*
- * This value MUST be a multiple of 64.
+ * This value MUST be a multiple of 64. This value MUST NOT exceed 47666
+ * (some computations in RSA key generation rely on the factor size being
+ * no more than 23833 bits). RSA key sizes beyond 3072 bits don't make a
+ * lot of sense anyway.
*/
#define BR_MAX_RSA_SIZE 4096
+/*
+ * Minimum size for a RSA modulus (in bits); this value is used only to
+ * filter out invalid parameters for key pair generation. Normally,
+ * applications should not use RSA keys smaller than 2048 bits; but some
+ * specific cases might need shorter keys, for legacy or research
+ * purposes.
+ */
+#define BR_MIN_RSA_SIZE 512
+
/*
* Maximum size for a RSA factor (in bits). This is for RSA private-key
* operations. Default is to support factors up to a bit more than half
*/
void br_i31_mulacc(uint32_t *d, const uint32_t *a, const uint32_t *b);
+/*
+ * Compute x/y mod m, result in x. Values x and y must be between 0 and
+ * m-1, and have the same announced bit length as m. Modulus m must be
+ * odd. The "m0i" parameter is equal to -1/m mod 2^31. The array 't'
+ * must point to a temporary area that can hold at least three integers
+ * of the size of m.
+ *
+ * m may not overlap x and y. x and y may overlap each other (this can
+ * be useful to test whether a value is invertible modulo m). t must be
+ * disjoint from all other arrays.
+ *
+ * Returned value is 1 on success, 0 otherwise. Success is attained if
+ * y is invertible modulo m.
+ */
+uint32_t br_i31_moddiv(uint32_t *x, const uint32_t *y,
+ const uint32_t *m, uint32_t m0i, uint32_t *t);
+
/* ==================================================================== */
/*
void br_i15_mulacc(uint16_t *d, const uint16_t *a, const uint16_t *b);
+uint32_t br_i15_moddiv(uint16_t *x, const uint16_t *y,
+ const uint16_t *m, uint16_t m0i, uint16_t *t);
+
+/*
+ * Variant of br_i31_modpow_opt() that internally uses 64x64->128
+ * multiplications. It expects the same parameters as br_i31_modpow_opt(),
+ * except that the temporaries should be 64-bit integers, not 32-bit
+ * integers.
+ */
uint32_t br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen,
const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen);
+/*
+ * Type for a function with the same API as br_i31_modpow_opt() (some
+ * implementations of this type may have stricter alignment requirements
+ * on the temporaries).
+ */
+typedef uint32_t (*br_i31_modpow_opt_type)(uint32_t *x,
+ const unsigned char *e, size_t elen,
+ const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);
+
+/*
+ * Wrapper for br_i62_modpow_opt() that uses the same type as
+ * br_i31_modpow_opt(); however, it requires its 'tmp' argument to the
+ * 64-bit aligned.
+ */
+uint32_t br_i62_modpow_opt_as_i31(uint32_t *x,
+ const unsigned char *e, size_t elen,
+ const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);
+
/* ==================================================================== */
static inline size_t
void br_mgf1_xor(void *data, size_t len,
const br_hash_class *dig, const void *seed, size_t seed_len);
+/*
+ * Inner function for RSA key generation; used by the "i31" and "i62"
+ * implementations.
+ */
+uint32_t br_rsa_i31_keygen_inner(const br_prng_class **rng,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp, br_i31_modpow_opt_type mp31);
+
/* ==================================================================== */
/*
* Elliptic curves.
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * In this file, we handle big integers with a custom format, i.e.
+ * without the usual one-word header. Value is split into 15-bit words,
+ * each stored in a 16-bit slot (top bit is zero) in little-endian
+ * order. The length (in words) is provided explicitly. In some cases,
+ * the value can be negative (using two's complement representation). In
+ * some cases, the top word is allowed to have a 16th bit.
+ */
+
+/*
+ * Negate big integer conditionally. The value consists of 'len' words,
+ * with 15 bits in each word (the top bit of each word should be 0,
+ * except possibly for the last word). If 'ctl' is 1, the negation is
+ * computed; otherwise, if 'ctl' is 0, then the value is unchanged.
+ */
+static void
+cond_negate(uint16_t *a, size_t len, uint32_t ctl)
+{
+ size_t k;
+ uint32_t cc, xm;
+
+ cc = ctl;
+ xm = 0x7FFF & -ctl;
+ for (k = 0; k < len; k ++) {
+ uint32_t aw;
+
+ aw = a[k];
+ aw = (aw ^ xm) + cc;
+ a[k] = aw & 0x7FFF;
+ cc = (aw >> 15) & 1;
+ }
+}
+
+/*
+ * Finish modular reduction. Rules on input parameters:
+ *
+ * if neg = 1, then -m <= a < 0
+ * if neg = 0, then 0 <= a < 2*m
+ *
+ * If neg = 0, then the top word of a[] may use 16 bits.
+ *
+ * Also, modulus m must be odd.
+ */
+static void
+finish_mod(uint16_t *a, size_t len, const uint16_t *m, uint32_t neg)
+{
+ size_t k;
+ uint32_t cc, xm, ym;
+
+ /*
+ * First pass: compare a (assumed nonnegative) with m.
+ */
+ cc = 0;
+ for (k = 0; k < len; k ++) {
+ uint32_t aw, mw;
+
+ aw = a[k];
+ mw = m[k];
+ cc = (aw - mw - cc) >> 31;
+ }
+
+ /*
+ * At this point:
+ * if neg = 1, then we must add m (regardless of cc)
+ * if neg = 0 and cc = 0, then we must subtract m
+ * if neg = 0 and cc = 1, then we must do nothing
+ */
+ xm = 0x7FFF & -neg;
+ ym = -(neg | (1 - cc));
+ cc = neg;
+ for (k = 0; k < len; k ++) {
+ uint32_t aw, mw;
+
+ aw = a[k];
+ mw = (m[k] ^ xm) & ym;
+ aw = aw - mw - cc;
+ a[k] = aw & 0x7FFF;
+ cc = aw >> 31;
+ }
+}
+
+/*
+ * Compute:
+ * a <- (a*pa+b*pb)/(2^15)
+ * b <- (a*qa+b*qb)/(2^15)
+ * The division is assumed to be exact (i.e. the low word is dropped).
+ * If the final a is negative, then it is negated. Similarly for b.
+ * Returned value is the combination of two bits:
+ * bit 0: 1 if a had to be negated, 0 otherwise
+ * bit 1: 1 if b had to be negated, 0 otherwise
+ *
+ * Factors pa, pb, qa and qb must be at most 2^15 in absolute value.
+ * Source integers a and b must be nonnegative; top word is not allowed
+ * to contain an extra 16th bit.
+ */
+static uint32_t
+co_reduce(uint16_t *a, uint16_t *b, size_t len,
+ int32_t pa, int32_t pb, int32_t qa, int32_t qb)
+{
+ size_t k;
+ int32_t cca, ccb;
+ uint32_t nega, negb;
+
+ cca = 0;
+ ccb = 0;
+ for (k = 0; k < len; k ++) {
+ uint32_t wa, wb, za, zb;
+ uint16_t tta, ttb;
+
+ /*
+ * Since:
+ * |pa| <= 2^15
+ * |pb| <= 2^15
+ * 0 <= wa <= 2^15 - 1
+ * 0 <= wb <= 2^15 - 1
+ * |cca| <= 2^16 - 1
+ * Then:
+ * |za| <= (2^15-1)*(2^16) + (2^16-1) = 2^31 - 1
+ *
+ * Thus, the new value of cca is such that |cca| <= 2^16 - 1.
+ * The same applies to ccb.
+ */
+ wa = a[k];
+ wb = b[k];
+ za = wa * (uint32_t)pa + wb * (uint32_t)pb + (uint32_t)cca;
+ zb = wa * (uint32_t)qa + wb * (uint32_t)qb + (uint32_t)ccb;
+ if (k > 0) {
+ a[k - 1] = za & 0x7FFF;
+ b[k - 1] = zb & 0x7FFF;
+ }
+ tta = za >> 15;
+ ttb = zb >> 15;
+ cca = *(int16_t *)&tta;
+ ccb = *(int16_t *)&ttb;
+ }
+ a[len - 1] = (uint16_t)cca;
+ b[len - 1] = (uint16_t)ccb;
+ nega = (uint32_t)cca >> 31;
+ negb = (uint32_t)ccb >> 31;
+ cond_negate(a, len, nega);
+ cond_negate(b, len, negb);
+ return nega | (negb << 1);
+}
+
+/*
+ * Compute:
+ * a <- (a*pa+b*pb)/(2^15) mod m
+ * b <- (a*qa+b*qb)/(2^15) mod m
+ *
+ * m0i is equal to -1/m[0] mod 2^15.
+ *
+ * Factors pa, pb, qa and qb must be at most 2^15 in absolute value.
+ * Source integers a and b must be nonnegative; top word is not allowed
+ * to contain an extra 16th bit.
+ */
+static void
+co_reduce_mod(uint16_t *a, uint16_t *b, size_t len,
+ int32_t pa, int32_t pb, int32_t qa, int32_t qb,
+ const uint16_t *m, uint16_t m0i)
+{
+ size_t k;
+ int32_t cca, ccb, fa, fb;
+
+ cca = 0;
+ ccb = 0;
+ fa = ((a[0] * (uint32_t)pa + b[0] * (uint32_t)pb) * m0i) & 0x7FFF;
+ fb = ((a[0] * (uint32_t)qa + b[0] * (uint32_t)qb) * m0i) & 0x7FFF;
+ for (k = 0; k < len; k ++) {
+ uint32_t wa, wb, za, zb;
+ uint32_t tta, ttb;
+
+ /*
+ * In this loop, carries 'cca' and 'ccb' always fit on
+ * 17 bits (in absolute value).
+ */
+ wa = a[k];
+ wb = b[k];
+ za = wa * (uint32_t)pa + wb * (uint32_t)pb
+ + m[k] * (uint32_t)fa + (uint32_t)cca;
+ zb = wa * (uint32_t)qa + wb * (uint32_t)qb
+ + m[k] * (uint32_t)fb + (uint32_t)ccb;
+ if (k > 0) {
+ a[k - 1] = za & 0x7FFF;
+ b[k - 1] = zb & 0x7FFF;
+ }
+
+ /*
+ * The XOR-and-sub construction below does an arithmetic
+ * right shift in a portable way (technically, right-shifting
+ * a negative signed value is implementation-defined in C).
+ */
+#define M ((uint32_t)1 << 16)
+ tta = za >> 15;
+ ttb = zb >> 15;
+ tta = (tta ^ M) - M;
+ ttb = (ttb ^ M) - M;
+ cca = *(int32_t *)&tta;
+ ccb = *(int32_t *)&ttb;
+#undef M
+ }
+ a[len - 1] = (uint32_t)cca;
+ b[len - 1] = (uint32_t)ccb;
+
+ /*
+ * At this point:
+ * -m <= a < 2*m
+ * -m <= b < 2*m
+ * (this is a case of Montgomery reduction)
+ * The top word of 'a' and 'b' may have a 16-th bit set.
+ * We may have to add or subtract the modulus.
+ */
+ finish_mod(a, len, m, (uint32_t)cca >> 31);
+ finish_mod(b, len, m, (uint32_t)ccb >> 31);
+}
+
+/* see inner.h */
+uint32_t
+br_i15_moddiv(uint16_t *x, const uint16_t *y, const uint16_t *m, uint16_t m0i,
+ uint16_t *t)
+{
+ /*
+ * Algorithm is an extended binary GCD. We maintain four values
+ * a, b, u and v, with the following invariants:
+ *
+ * a * x = y * u mod m
+ * b * x = y * v mod m
+ *
+ * Starting values are:
+ *
+ * a = y
+ * b = m
+ * u = x
+ * v = 0
+ *
+ * The formal definition of the algorithm is a sequence of steps:
+ *
+ * - If a is even, then a <- a/2 and u <- u/2 mod m.
+ * - Otherwise, if b is even, then b <- b/2 and v <- v/2 mod m.
+ * - Otherwise, if a > b, then a <- (a-b)/2 and u <- (u-v)/2 mod m.
+ * - Otherwise, b <- (b-a)/2 and v <- (v-u)/2 mod m.
+ *
+ * Algorithm stops when a = b. At that point, they both are equal
+ * to GCD(y,m); the modular division succeeds if that value is 1.
+ * The result of the modular division is then u (or v: both are
+ * equal at that point).
+ *
+ * Each step makes either a or b shrink by at least one bit; hence,
+ * if m has bit length k bits, then 2k-2 steps are sufficient.
+ *
+ *
+ * Though complexity is quadratic in the size of m, the bit-by-bit
+ * processing is not very efficient. We can speed up processing by
+ * remarking that the decisions are taken based only on observation
+ * of the top and low bits of a and b.
+ *
+ * In the loop below, at each iteration, we use the two top words
+ * of a and b, and the low words of a and b, to compute reduction
+ * parameters pa, pb, qa and qb such that the new values for a
+ * and b are:
+ *
+ * a' = (a*pa + b*pb) / (2^15)
+ * b' = (a*qa + b*qb) / (2^15)
+ *
+ * the division being exact.
+ *
+ * Since the choices are based on the top words, they may be slightly
+ * off, requiring an optional correction: if a' < 0, then we replace
+ * pa with -pa, and pb with -pb. The total length of a and b is
+ * thus reduced by at least 14 bits at each iteration.
+ *
+ * The stopping conditions are still the same, though: when a
+ * and b become equal, they must be both odd (since m is odd,
+ * the GCD cannot be even), therefore the next operation is a
+ * subtraction, and one of the values becomes 0. At that point,
+ * nothing else happens, i.e. one value is stuck at 0, and the
+ * other one is the GCD.
+ */
+ size_t len, k;
+ uint16_t *a, *b, *u, *v;
+ uint32_t num, r;
+
+ len = (m[0] + 15) >> 4;
+ a = t;
+ b = a + len;
+ u = x + 1;
+ v = b + len;
+ memcpy(a, y + 1, len * sizeof *y);
+ memcpy(b, m + 1, len * sizeof *m);
+ memset(v, 0, len * sizeof *v);
+
+ /*
+ * Loop below ensures that a and b are reduced by some bits each,
+ * for a total of at least 14 bits.
+ */
+ for (num = ((m[0] - (m[0] >> 4)) << 1) + 14; num >= 14; num -= 14) {
+ size_t j;
+ uint32_t c0, c1;
+ uint32_t a0, a1, b0, b1;
+ uint32_t a_hi, b_hi, a_lo, b_lo;
+ int32_t pa, pb, qa, qb;
+ int i;
+
+ /*
+ * Extract top words of a and b. If j is the highest
+ * index >= 1 such that a[j] != 0 or b[j] != 0, then we want
+ * (a[j] << 15) + a[j - 1], and (b[j] << 15) + b[j - 1].
+ * If a and b are down to one word each, then we use a[0]
+ * and b[0].
+ */
+ c0 = (uint32_t)-1;
+ c1 = (uint32_t)-1;
+ a0 = 0;
+ a1 = 0;
+ b0 = 0;
+ b1 = 0;
+ j = len;
+ while (j -- > 0) {
+ uint32_t aw, bw;
+
+ aw = a[j];
+ bw = b[j];
+ a0 ^= (a0 ^ aw) & c0;
+ a1 ^= (a1 ^ aw) & c1;
+ b0 ^= (b0 ^ bw) & c0;
+ b1 ^= (b1 ^ bw) & c1;
+ c1 = c0;
+ c0 &= (((aw | bw) + 0xFFFF) >> 16) - (uint32_t)1;
+ }
+
+ /*
+ * If c1 = 0, then we grabbed two words for a and b.
+ * If c1 != 0 but c0 = 0, then we grabbed one word. It
+ * is not possible that c1 != 0 and c0 != 0, because that
+ * would mean that both integers are zero.
+ */
+ a1 |= a0 & c1;
+ a0 &= ~c1;
+ b1 |= b0 & c1;
+ b0 &= ~c1;
+ a_hi = (a0 << 15) + a1;
+ b_hi = (b0 << 15) + b1;
+ a_lo = a[0];
+ b_lo = b[0];
+
+ /*
+ * Compute reduction factors:
+ *
+ * a' = a*pa + b*pb
+ * b' = a*qa + b*qb
+ *
+ * such that a' and b' are both multiple of 2^15, but are
+ * only marginally larger than a and b.
+ */
+ pa = 1;
+ pb = 0;
+ qa = 0;
+ qb = 1;
+ for (i = 0; i < 15; i ++) {
+ /*
+ * At each iteration:
+ *
+ * a <- (a-b)/2 if: a is odd, b is odd, a_hi > b_hi
+ * b <- (b-a)/2 if: a is odd, b is odd, a_hi <= b_hi
+ * a <- a/2 if: a is even
+ * b <- b/2 if: a is odd, b is even
+ *
+ * We multiply a_lo and b_lo by 2 at each
+ * iteration, thus a division by 2 really is a
+ * non-multiplication by 2.
+ */
+ uint32_t r, oa, ob, cAB, cBA, cA;
+
+ /*
+ * cAB = 1 if b must be subtracted from a
+ * cBA = 1 if a must be subtracted from b
+ * cA = 1 if a is divided by 2, 0 otherwise
+ *
+ * Rules:
+ *
+ * cAB and cBA cannot be both 1.
+ * if a is not divided by 2, b is.
+ */
+ r = GT(a_hi, b_hi);
+ oa = (a_lo >> i) & 1;
+ ob = (b_lo >> i) & 1;
+ cAB = oa & ob & r;
+ cBA = oa & ob & NOT(r);
+ cA = cAB | NOT(oa);
+
+ /*
+ * Conditional subtractions.
+ */
+ a_lo -= b_lo & -cAB;
+ a_hi -= b_hi & -cAB;
+ pa -= qa & -(int32_t)cAB;
+ pb -= qb & -(int32_t)cAB;
+ b_lo -= a_lo & -cBA;
+ b_hi -= a_hi & -cBA;
+ qa -= pa & -(int32_t)cBA;
+ qb -= pb & -(int32_t)cBA;
+
+ /*
+ * Shifting.
+ */
+ a_lo += a_lo & (cA - 1);
+ pa += pa & ((int32_t)cA - 1);
+ pb += pb & ((int32_t)cA - 1);
+ a_hi ^= (a_hi ^ (a_hi >> 1)) & -cA;
+ b_lo += b_lo & -cA;
+ qa += qa & -(int32_t)cA;
+ qb += qb & -(int32_t)cA;
+ b_hi ^= (b_hi ^ (b_hi >> 1)) & (cA - 1);
+ }
+
+ /*
+ * Replace a and b with new values a' and b'.
+ */
+ r = co_reduce(a, b, len, pa, pb, qa, qb);
+ pa -= pa * ((r & 1) << 1);
+ pb -= pb * ((r & 1) << 1);
+ qa -= qa * (r & 2);
+ qb -= qb * (r & 2);
+ co_reduce_mod(u, v, len, pa, pb, qa, qb, m + 1, m0i);
+ }
+
+ /*
+ * Now one of the arrays should be 0, and the other contains
+ * the GCD. If a is 0, then u is 0 as well, and v contains
+ * the division result.
+ * Result is correct if and only if GCD is 1.
+ */
+ r = (a[0] | b[0]) ^ 1;
+ u[0] |= v[0];
+ for (k = 1; k < len; k ++) {
+ r |= a[k] | b[k];
+ u[k] |= v[k];
+ }
+ return EQ0(r);
+}
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * In this file, we handle big integers with a custom format, i.e.
+ * without the usual one-word header. Value is split into 31-bit words,
+ * each stored in a 32-bit slot (top bit is zero) in little-endian
+ * order. The length (in words) is provided explicitly. In some cases,
+ * the value can be negative (using two's complement representation). In
+ * some cases, the top word is allowed to have a 32th bit.
+ */
+
+/*
+ * Negate big integer conditionally. The value consists of 'len' words,
+ * with 31 bits in each word (the top bit of each word should be 0,
+ * except possibly for the last word). If 'ctl' is 1, the negation is
+ * computed; otherwise, if 'ctl' is 0, then the value is unchanged.
+ */
+static void
+cond_negate(uint32_t *a, size_t len, uint32_t ctl)
+{
+ size_t k;
+ uint32_t cc, xm;
+
+ cc = ctl;
+ xm = -ctl >> 1;
+ for (k = 0; k < len; k ++) {
+ uint32_t aw;
+
+ aw = a[k];
+ aw = (aw ^ xm) + cc;
+ a[k] = aw & 0x7FFFFFFF;
+ cc = aw >> 31;
+ }
+}
+
+/*
+ * Finish modular reduction. Rules on input parameters:
+ *
+ * if neg = 1, then -m <= a < 0
+ * if neg = 0, then 0 <= a < 2*m
+ *
+ * If neg = 0, then the top word of a[] may use 32 bits.
+ *
+ * Also, modulus m must be odd.
+ */
+static void
+finish_mod(uint32_t *a, size_t len, const uint32_t *m, uint32_t neg)
+{
+ size_t k;
+ uint32_t cc, xm, ym;
+
+ /*
+ * First pass: compare a (assumed nonnegative) with m.
+ * Note that if the final word uses the top extra bit, then
+ * subtracting m must yield a value less than 2^31, since we
+ * assumed that a < 2*m.
+ */
+ cc = 0;
+ for (k = 0; k < len; k ++) {
+ uint32_t aw, mw;
+
+ aw = a[k];
+ mw = m[k];
+ cc = (aw - mw - cc) >> 31;
+ }
+
+ /*
+ * At this point:
+ * if neg = 1, then we must add m (regardless of cc)
+ * if neg = 0 and cc = 0, then we must subtract m
+ * if neg = 0 and cc = 1, then we must do nothing
+ */
+ xm = -neg >> 1;
+ ym = -(neg | (1 - cc));
+ cc = neg;
+ for (k = 0; k < len; k ++) {
+ uint32_t aw, mw;
+
+ aw = a[k];
+ mw = (m[k] ^ xm) & ym;
+ aw = aw - mw - cc;
+ a[k] = aw & 0x7FFFFFFF;
+ cc = aw >> 31;
+ }
+}
+
+/*
+ * Compute:
+ * a <- (a*pa+b*pb)/(2^31)
+ * b <- (a*qa+b*qb)/(2^31)
+ * The division is assumed to be exact (i.e. the low word is dropped).
+ * If the final a is negative, then it is negated. Similarly for b.
+ * Returned value is the combination of two bits:
+ * bit 0: 1 if a had to be negated, 0 otherwise
+ * bit 1: 1 if b had to be negated, 0 otherwise
+ *
+ * Factors pa, pb, qa and qb must be at most 2^31 in absolute value.
+ * Source integers a and b must be nonnegative; top word is not allowed
+ * to contain an extra 32th bit.
+ */
+static uint32_t
+co_reduce(uint32_t *a, uint32_t *b, size_t len,
+ int64_t pa, int64_t pb, int64_t qa, int64_t qb)
+{
+ size_t k;
+ int64_t cca, ccb;
+ uint32_t nega, negb;
+
+ cca = 0;
+ ccb = 0;
+ for (k = 0; k < len; k ++) {
+ uint32_t wa, wb;
+ uint64_t za, zb;
+ uint64_t tta, ttb;
+
+ /*
+ * Since:
+ * |pa| <= 2^31
+ * |pb| <= 2^31
+ * 0 <= wa <= 2^31 - 1
+ * 0 <= wb <= 2^31 - 1
+ * |cca| <= 2^32 - 1
+ * Then:
+ * |za| <= (2^31-1)*(2^32) + (2^32-1) = 2^63 - 1
+ *
+ * Thus, the new value of cca is such that |cca| <= 2^32 - 1.
+ * The same applies to ccb.
+ */
+ wa = a[k];
+ wb = b[k];
+ za = wa * (uint64_t)pa + wb * (uint64_t)pb + (uint64_t)cca;
+ zb = wa * (uint64_t)qa + wb * (uint64_t)qb + (uint64_t)ccb;
+ if (k > 0) {
+ a[k - 1] = za & 0x7FFFFFFF;
+ b[k - 1] = zb & 0x7FFFFFFF;
+ }
+
+ /*
+ * For the new values of cca and ccb, we need a signed
+ * right-shift; since, in C, right-shifting a signed
+ * negative value is implementation-defined, we use a
+ * custom portable sign extension expression.
+ */
+#define M ((uint64_t)1 << 32)
+ tta = za >> 31;
+ ttb = zb >> 31;
+ tta = (tta ^ M) - M;
+ ttb = (ttb ^ M) - M;
+ cca = *(int64_t *)&tta;
+ ccb = *(int64_t *)&ttb;
+#undef M
+ }
+ a[len - 1] = (uint32_t)cca;
+ b[len - 1] = (uint32_t)ccb;
+
+ nega = (uint32_t)((uint64_t)cca >> 63);
+ negb = (uint32_t)((uint64_t)ccb >> 63);
+ cond_negate(a, len, nega);
+ cond_negate(b, len, negb);
+ return nega | (negb << 1);
+}
+
+/*
+ * Compute:
+ * a <- (a*pa+b*pb)/(2^31) mod m
+ * b <- (a*qa+b*qb)/(2^31) mod m
+ *
+ * m0i is equal to -1/m[0] mod 2^31.
+ *
+ * Factors pa, pb, qa and qb must be at most 2^31 in absolute value.
+ * Source integers a and b must be nonnegative; top word is not allowed
+ * to contain an extra 32th bit.
+ */
+static void
+co_reduce_mod(uint32_t *a, uint32_t *b, size_t len,
+ int64_t pa, int64_t pb, int64_t qa, int64_t qb,
+ const uint32_t *m, uint32_t m0i)
+{
+ size_t k;
+ int64_t cca, ccb;
+ uint32_t fa, fb;
+
+ cca = 0;
+ ccb = 0;
+ fa = ((a[0] * (uint32_t)pa + b[0] * (uint32_t)pb) * m0i) & 0x7FFFFFFF;
+ fb = ((a[0] * (uint32_t)qa + b[0] * (uint32_t)qb) * m0i) & 0x7FFFFFFF;
+ for (k = 0; k < len; k ++) {
+ uint32_t wa, wb;
+ uint64_t za, zb;
+ uint64_t tta, ttb;
+
+ /*
+ * In this loop, carries 'cca' and 'ccb' always fit on
+ * 33 bits (in absolute value).
+ */
+ wa = a[k];
+ wb = b[k];
+ za = wa * (uint64_t)pa + wb * (uint64_t)pb
+ + m[k] * (uint64_t)fa + (uint64_t)cca;
+ zb = wa * (uint64_t)qa + wb * (uint64_t)qb
+ + m[k] * (uint64_t)fb + (uint64_t)ccb;
+ if (k > 0) {
+ a[k - 1] = (uint32_t)za & 0x7FFFFFFF;
+ b[k - 1] = (uint32_t)zb & 0x7FFFFFFF;
+ }
+
+#define M ((uint64_t)1 << 32)
+ tta = za >> 31;
+ ttb = zb >> 31;
+ tta = (tta ^ M) - M;
+ ttb = (ttb ^ M) - M;
+ cca = *(int64_t *)&tta;
+ ccb = *(int64_t *)&ttb;
+#undef M
+ }
+ a[len - 1] = (uint32_t)cca;
+ b[len - 1] = (uint32_t)ccb;
+
+ /*
+ * At this point:
+ * -m <= a < 2*m
+ * -m <= b < 2*m
+ * (this is a case of Montgomery reduction)
+ * The top word of 'a' and 'b' may have a 32-th bit set.
+ * We may have to add or subtract the modulus.
+ */
+ finish_mod(a, len, m, (uint32_t)((uint64_t)cca >> 63));
+ finish_mod(b, len, m, (uint32_t)((uint64_t)ccb >> 63));
+}
+
+/* see inner.h */
+uint32_t
+br_i31_moddiv(uint32_t *x, const uint32_t *y, const uint32_t *m, uint32_t m0i,
+ uint32_t *t)
+{
+ /*
+ * Algorithm is an extended binary GCD. We maintain four values
+ * a, b, u and v, with the following invariants:
+ *
+ * a * x = y * u mod m
+ * b * x = y * v mod m
+ *
+ * Starting values are:
+ *
+ * a = y
+ * b = m
+ * u = x
+ * v = 0
+ *
+ * The formal definition of the algorithm is a sequence of steps:
+ *
+ * - If a is even, then a <- a/2 and u <- u/2 mod m.
+ * - Otherwise, if b is even, then b <- b/2 and v <- v/2 mod m.
+ * - Otherwise, if a > b, then a <- (a-b)/2 and u <- (u-v)/2 mod m.
+ * - Otherwise, b <- (b-a)/2 and v <- (v-u)/2 mod m.
+ *
+ * Algorithm stops when a = b. At that point, they both are equal
+ * to GCD(y,m); the modular division succeeds if that value is 1.
+ * The result of the modular division is then u (or v: both are
+ * equal at that point).
+ *
+ * Each step makes either a or b shrink by at least one bit; hence,
+ * if m has bit length k bits, then 2k-2 steps are sufficient.
+ *
+ *
+ * Though complexity is quadratic in the size of m, the bit-by-bit
+ * processing is not very efficient. We can speed up processing by
+ * remarking that the decisions are taken based only on observation
+ * of the top and low bits of a and b.
+ *
+ * In the loop below, at each iteration, we use the two top words
+ * of a and b, and the low words of a and b, to compute reduction
+ * parameters pa, pb, qa and qb such that the new values for a
+ * and b are:
+ *
+ * a' = (a*pa + b*pb) / (2^31)
+ * b' = (a*qa + b*qb) / (2^31)
+ *
+ * the division being exact.
+ *
+ * Since the choices are based on the top words, they may be slightly
+ * off, requiring an optional correction: if a' < 0, then we replace
+ * pa with -pa, and pb with -pb. The total length of a and b is
+ * thus reduced by at least 30 bits at each iteration.
+ *
+ * The stopping conditions are still the same, though: when a
+ * and b become equal, they must be both odd (since m is odd,
+ * the GCD cannot be even), therefore the next operation is a
+ * subtraction, and one of the values becomes 0. At that point,
+ * nothing else happens, i.e. one value is stuck at 0, and the
+ * other one is the GCD.
+ */
+ size_t len, k;
+ uint32_t *a, *b, *u, *v;
+ uint32_t num, r;
+
+ len = (m[0] + 31) >> 5;
+ a = t;
+ b = a + len;
+ u = x + 1;
+ v = b + len;
+ memcpy(a, y + 1, len * sizeof *y);
+ memcpy(b, m + 1, len * sizeof *m);
+ memset(v, 0, len * sizeof *v);
+
+ /*
+ * Loop below ensures that a and b are reduced by some bits each,
+ * for a total of at least 30 bits.
+ */
+ for (num = ((m[0] - (m[0] >> 5)) << 1) + 30; num >= 30; num -= 30) {
+ size_t j;
+ uint32_t c0, c1;
+ uint32_t a0, a1, b0, b1;
+ uint64_t a_hi, b_hi;
+ uint32_t a_lo, b_lo;
+ int64_t pa, pb, qa, qb;
+ int i;
+
+ /*
+ * Extract top words of a and b. If j is the highest
+ * index >= 1 such that a[j] != 0 or b[j] != 0, then we want
+ * (a[j] << 31) + a[j - 1], and (b[j] << 31) + b[j - 1].
+ * If a and b are down to one word each, then we use a[0]
+ * and b[0].
+ */
+ c0 = (uint32_t)-1;
+ c1 = (uint32_t)-1;
+ a0 = 0;
+ a1 = 0;
+ b0 = 0;
+ b1 = 0;
+ j = len;
+ while (j -- > 0) {
+ uint32_t aw, bw;
+
+ aw = a[j];
+ bw = b[j];
+ a0 ^= (a0 ^ aw) & c0;
+ a1 ^= (a1 ^ aw) & c1;
+ b0 ^= (b0 ^ bw) & c0;
+ b1 ^= (b1 ^ bw) & c1;
+ c1 = c0;
+ c0 &= (((aw | bw) + 0x7FFFFFFF) >> 31) - (uint32_t)1;
+ }
+
+ /*
+ * If c1 = 0, then we grabbed two words for a and b.
+ * If c1 != 0 but c0 = 0, then we grabbed one word. It
+ * is not possible that c1 != 0 and c0 != 0, because that
+ * would mean that both integers are zero.
+ */
+ a1 |= a0 & c1;
+ a0 &= ~c1;
+ b1 |= b0 & c1;
+ b0 &= ~c1;
+ a_hi = ((uint64_t)a0 << 31) + a1;
+ b_hi = ((uint64_t)b0 << 31) + b1;
+ a_lo = a[0];
+ b_lo = b[0];
+
+ /*
+ * Compute reduction factors:
+ *
+ * a' = a*pa + b*pb
+ * b' = a*qa + b*qb
+ *
+ * such that a' and b' are both multiple of 2^31, but are
+ * only marginally larger than a and b.
+ */
+ pa = 1;
+ pb = 0;
+ qa = 0;
+ qb = 1;
+ for (i = 0; i < 31; i ++) {
+ /*
+ * At each iteration:
+ *
+ * a <- (a-b)/2 if: a is odd, b is odd, a_hi > b_hi
+ * b <- (b-a)/2 if: a is odd, b is odd, a_hi <= b_hi
+ * a <- a/2 if: a is even
+ * b <- b/2 if: a is odd, b is even
+ *
+ * We multiply a_lo and b_lo by 2 at each
+ * iteration, thus a division by 2 really is a
+ * non-multiplication by 2.
+ */
+ uint32_t r, oa, ob, cAB, cBA, cA;
+ uint64_t rz;
+
+ /*
+ * r = GT(a_hi, b_hi)
+ * But the GT() function works on uint32_t operands,
+ * so we inline a 64-bit version here.
+ */
+ rz = b_hi - a_hi;
+ r = (uint32_t)((rz ^ ((a_hi ^ b_hi)
+ & (a_hi ^ rz))) >> 63);
+
+ /*
+ * cAB = 1 if b must be subtracted from a
+ * cBA = 1 if a must be subtracted from b
+ * cA = 1 if a is divided by 2, 0 otherwise
+ *
+ * Rules:
+ *
+ * cAB and cBA cannot be both 1.
+ * if a is not divided by 2, b is.
+ */
+ oa = (a_lo >> i) & 1;
+ ob = (b_lo >> i) & 1;
+ cAB = oa & ob & r;
+ cBA = oa & ob & NOT(r);
+ cA = cAB | NOT(oa);
+
+ /*
+ * Conditional subtractions.
+ */
+ a_lo -= b_lo & -cAB;
+ a_hi -= b_hi & -(uint64_t)cAB;
+ pa -= qa & -(int64_t)cAB;
+ pb -= qb & -(int64_t)cAB;
+ b_lo -= a_lo & -cBA;
+ b_hi -= a_hi & -(uint64_t)cBA;
+ qa -= pa & -(int64_t)cBA;
+ qb -= pb & -(int64_t)cBA;
+
+ /*
+ * Shifting.
+ */
+ a_lo += a_lo & (cA - 1);
+ pa += pa & ((int64_t)cA - 1);
+ pb += pb & ((int64_t)cA - 1);
+ a_hi ^= (a_hi ^ (a_hi >> 1)) & -(uint64_t)cA;
+ b_lo += b_lo & -cA;
+ qa += qa & -(int64_t)cA;
+ qb += qb & -(int64_t)cA;
+ b_hi ^= (b_hi ^ (b_hi >> 1)) & ((uint64_t)cA - 1);
+ }
+
+ /*
+ * Replace a and b with new values a' and b'.
+ */
+ r = co_reduce(a, b, len, pa, pb, qa, qb);
+ pa -= pa * ((r & 1) << 1);
+ pb -= pb * ((r & 1) << 1);
+ qa -= qa * (r & 2);
+ qb -= qb * (r & 2);
+ co_reduce_mod(u, v, len, pa, pb, qa, qb, m + 1, m0i);
+ }
+
+ /*
+ * Now one of the arrays should be 0, and the other contains
+ * the GCD. If a is 0, then u is 0 as well, and v contains
+ * the division result.
+ * Result is correct if and only if GCD is 1.
+ */
+ r = (a[0] | b[0]) ^ 1;
+ u[0] |= v[0];
+ for (k = 1; k < len; k ++) {
+ r |= a[k] | b[k];
+ u[k] |= v[k];
+ }
+ return EQ0(r);
+}
mw62num = (mw31num + 1) >> 1;
/*
- * In order to apply this function, we must have enough room tp
+ * In order to apply this function, we must have enough room to
* copy the operand and modulus into the temporary array, along
* with at least two temporaries. If there is not enough room,
* switch to br_i31_modpow(). We also use br_i31_modpow() if the
}
#endif
+
+/* see inner.h */
+uint32_t
+br_i62_modpow_opt_as_i31(uint32_t *x31, const unsigned char *e, size_t elen,
+ const uint32_t *m31, uint32_t m0i31, uint32_t *tmp, size_t twlen)
+{
+ /*
+ * As documented, this function expects the 'tmp' argument to be
+ * 64-bit aligned. This is OK since this function is internal (it
+ * is not part of BearSSL's public API).
+ */
+ return br_i62_modpow_opt(x31, e, elen, m31, m0i31,
+ (uint64_t *)tmp, twlen >> 1);
+}
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/* see bearssl_rsa.h */
+br_rsa_keygen
+br_rsa_keygen_get_default(void)
+{
+#if BR_INT128 || BR_UMUL128
+ return &br_rsa_i62_keygen;
+#elif BR_LOMUL
+ return &br_rsa_i15_keygen;
+#else
+ return &br_rsa_i31_keygen;
+#endif
+}
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * Make a random integer of the provided size. The size is encoded.
+ * The header word is untouched.
+ */
+static void
+mkrand(const br_prng_class **rng, uint16_t *x, uint32_t esize)
+{
+ size_t u, len;
+ unsigned m;
+
+ len = (esize + 15) >> 4;
+ (*rng)->generate(rng, x + 1, len * sizeof(uint16_t));
+ for (u = 1; u < len; u ++) {
+ x[u] &= 0x7FFF;
+ }
+ m = esize & 15;
+ if (m == 0) {
+ x[len] &= 0x7FFF;
+ } else {
+ x[len] &= 0x7FFF >> (15 - m);
+ }
+}
+
+/*
+ * This is the big-endian unsigned representation of the product of
+ * all small primes from 13 to 1481.
+ */
+static const unsigned char SMALL_PRIMES[] = {
+ 0x2E, 0xAB, 0x92, 0xD1, 0x8B, 0x12, 0x47, 0x31, 0x54, 0x0A,
+ 0x99, 0x5D, 0x25, 0x5E, 0xE2, 0x14, 0x96, 0x29, 0x1E, 0xB7,
+ 0x78, 0x70, 0xCC, 0x1F, 0xA5, 0xAB, 0x8D, 0x72, 0x11, 0x37,
+ 0xFB, 0xD8, 0x1E, 0x3F, 0x5B, 0x34, 0x30, 0x17, 0x8B, 0xE5,
+ 0x26, 0x28, 0x23, 0xA1, 0x8A, 0xA4, 0x29, 0xEA, 0xFD, 0x9E,
+ 0x39, 0x60, 0x8A, 0xF3, 0xB5, 0xA6, 0xEB, 0x3F, 0x02, 0xB6,
+ 0x16, 0xC3, 0x96, 0x9D, 0x38, 0xB0, 0x7D, 0x82, 0x87, 0x0C,
+ 0xF7, 0xBE, 0x24, 0xE5, 0x5F, 0x41, 0x04, 0x79, 0x76, 0x40,
+ 0xE7, 0x00, 0x22, 0x7E, 0xB5, 0x85, 0x7F, 0x8D, 0x01, 0x50,
+ 0xE9, 0xD3, 0x29, 0x42, 0x08, 0xB3, 0x51, 0x40, 0x7B, 0xD7,
+ 0x8D, 0xCC, 0x10, 0x01, 0x64, 0x59, 0x28, 0xB6, 0x53, 0xF3,
+ 0x50, 0x4E, 0xB1, 0xF2, 0x58, 0xCD, 0x6E, 0xF5, 0x56, 0x3E,
+ 0x66, 0x2F, 0xD7, 0x07, 0x7F, 0x52, 0x4C, 0x13, 0x24, 0xDC,
+ 0x8E, 0x8D, 0xCC, 0xED, 0x77, 0xC4, 0x21, 0xD2, 0xFD, 0x08,
+ 0xEA, 0xD7, 0xC0, 0x5C, 0x13, 0x82, 0x81, 0x31, 0x2F, 0x2B,
+ 0x08, 0xE4, 0x80, 0x04, 0x7A, 0x0C, 0x8A, 0x3C, 0xDC, 0x22,
+ 0xE4, 0x5A, 0x7A, 0xB0, 0x12, 0x5E, 0x4A, 0x76, 0x94, 0x77,
+ 0xC2, 0x0E, 0x92, 0xBA, 0x8A, 0xA0, 0x1F, 0x14, 0x51, 0x1E,
+ 0x66, 0x6C, 0x38, 0x03, 0x6C, 0xC7, 0x4A, 0x4B, 0x70, 0x80,
+ 0xAF, 0xCA, 0x84, 0x51, 0xD8, 0xD2, 0x26, 0x49, 0xF5, 0xA8,
+ 0x5E, 0x35, 0x4B, 0xAC, 0xCE, 0x29, 0x92, 0x33, 0xB7, 0xA2,
+ 0x69, 0x7D, 0x0C, 0xE0, 0x9C, 0xDB, 0x04, 0xD6, 0xB4, 0xBC,
+ 0x39, 0xD7, 0x7F, 0x9E, 0x9D, 0x78, 0x38, 0x7F, 0x51, 0x54,
+ 0x50, 0x8B, 0x9E, 0x9C, 0x03, 0x6C, 0xF5, 0x9D, 0x2C, 0x74,
+ 0x57, 0xF0, 0x27, 0x2A, 0xC3, 0x47, 0xCA, 0xB9, 0xD7, 0x5C,
+ 0xFF, 0xC2, 0xAC, 0x65, 0x4E, 0xBD
+};
+
+/*
+ * We need temporary values for at least 7 integers of the same size
+ * as a factor (including header word); more space helps with performance
+ * (in modular exponentiations), but we much prefer to remain under
+ * 2 kilobytes in total, to save stack space. The macro TEMPS below
+ * exceeds 1024 (which is a count in 16-bit words) when BR_MAX_RSA_SIZE
+ * is greater than 4350 (default value is 4096, so the 2-kB limit is
+ * maintained unless BR_MAX_RSA_SIZE was modified).
+ */
+#define MAX(x, y) ((x) > (y) ? (x) : (y))
+#define TEMPS MAX(1024, 7 * ((((BR_MAX_RSA_SIZE + 1) >> 1) + 29) / 15))
+
+/*
+ * Perform trial division on a candidate prime. This computes
+ * y = SMALL_PRIMES mod x, then tries to compute y/y mod x. The
+ * br_i15_moddiv() function will report an error if y is not invertible
+ * modulo x. Returned value is 1 on success (none of the small primes
+ * divides x), 0 on error (a non-trivial GCD is obtained).
+ *
+ * This function assumes that x is odd.
+ */
+static uint32_t
+trial_divisions(const uint16_t *x, uint16_t *t)
+{
+ uint16_t *y;
+ uint16_t x0i;
+
+ y = t;
+ t += 1 + ((x[0] + 15) >> 4);
+ x0i = br_i15_ninv15(x[1]);
+ br_i15_decode_reduce(y, SMALL_PRIMES, sizeof SMALL_PRIMES, x);
+ return br_i15_moddiv(y, y, x, x0i, t);
+}
+
+/*
+ * Perform n rounds of Miller-Rabin on the candidate prime x. This
+ * function assumes that x = 3 mod 4.
+ *
+ * Returned value is 1 on success (all rounds completed successfully),
+ * 0 otherwise.
+ */
+static uint32_t
+miller_rabin(const br_prng_class **rng, const uint16_t *x, int n,
+ uint16_t *t, size_t tlen)
+{
+ /*
+ * Since x = 3 mod 4, the Miller-Rabin test is simple:
+ * - get a random base a (such that 1 < a < x-1)
+ * - compute z = a^((x-1)/2) mod x
+ * - if z != 1 and z != x-1, the number x is composite
+ *
+ * We generate bases 'a' randomly with a size which is
+ * one bit less than x, which ensures that a < x-1. It
+ * is not useful to verify that a > 1 because the probability
+ * that we get a value a equal to 0 or 1 is much smaller
+ * than the probability of our Miller-Rabin tests not to
+ * detect a composite, which is already quite smaller than the
+ * probability of the hardware misbehaving and return a
+ * composite integer because of some glitch (e.g. bad RAM
+ * or ill-timed cosmic ray).
+ */
+ unsigned char *xm1d2;
+ size_t xlen, xm1d2_len, xm1d2_len_u16, u;
+ uint32_t asize;
+ unsigned cc;
+ uint16_t x0i;
+
+ /*
+ * Compute (x-1)/2 (encoded).
+ */
+ xm1d2 = (unsigned char *)t;
+ xm1d2_len = ((x[0] - (x[0] >> 4)) + 7) >> 3;
+ br_i15_encode(xm1d2, xm1d2_len, x);
+ cc = 0;
+ for (u = 0; u < xm1d2_len; u ++) {
+ unsigned w;
+
+ w = xm1d2[u];
+ xm1d2[u] = (unsigned char)((w >> 1) | cc);
+ cc = w << 7;
+ }
+
+ /*
+ * We used some words of the provided buffer for (x-1)/2.
+ */
+ xm1d2_len_u16 = (xm1d2_len + 1) >> 1;
+ t += xm1d2_len_u16;
+ tlen -= xm1d2_len_u16;
+
+ xlen = (x[0] + 15) >> 4;
+ asize = x[0] - 1 - EQ0(x[0] & 15);
+ x0i = br_i15_ninv15(x[1]);
+ while (n -- > 0) {
+ uint16_t *a;
+ uint32_t eq1, eqm1;
+
+ /*
+ * Generate a random base. We don't need the base to be
+ * really uniform modulo x, so we just get a random
+ * number which is one bit shorter than x.
+ */
+ a = t;
+ a[0] = x[0];
+ a[xlen] = 0;
+ mkrand(rng, a, asize);
+
+ /*
+ * Compute a^((x-1)/2) mod x. We assume here that the
+ * function will not fail (the temporary array is large
+ * enough).
+ */
+ br_i15_modpow_opt(a, xm1d2, xm1d2_len,
+ x, x0i, t + 1 + xlen, tlen - 1 - xlen);
+
+ /*
+ * We must obtain either 1 or x-1. Note that x is odd,
+ * hence x-1 differs from x only in its low word (no
+ * carry).
+ */
+ eq1 = a[1] ^ 1;
+ eqm1 = a[1] ^ (x[1] - 1);
+ for (u = 2; u <= xlen; u ++) {
+ eq1 |= a[u];
+ eqm1 |= a[u] ^ x[u];
+ }
+
+ if ((EQ0(eq1) | EQ0(eqm1)) == 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+ * Create a random prime of the provided size. 'size' is the _encoded_
+ * bit length. The two top bits and the two bottom bits are set to 1.
+ */
+static void
+mkprime(const br_prng_class **rng, uint16_t *x, uint32_t esize,
+ uint32_t pubexp, uint16_t *t, size_t tlen)
+{
+ size_t len;
+
+ x[0] = esize;
+ len = (esize + 15) >> 4;
+ for (;;) {
+ size_t u;
+ uint32_t m3, m5, m7, m11;
+ int rounds;
+
+ /*
+ * Generate random bits. We force the two top bits and the
+ * two bottom bits to 1.
+ */
+ mkrand(rng, x, esize);
+ if ((esize & 15) == 0) {
+ x[len] |= 0x6000;
+ } else if ((esize & 15) == 1) {
+ x[len] |= 0x0001;
+ x[len - 1] |= 0x4000;
+ } else {
+ x[len] |= 0x0003 << ((esize & 15) - 2);
+ }
+ x[1] |= 0x0003;
+
+ /*
+ * Trial division with low primes (3, 5, 7 and 11). We
+ * use the following properties:
+ *
+ * 2^2 = 1 mod 3
+ * 2^4 = 1 mod 5
+ * 2^3 = 1 mod 7
+ * 2^10 = 1 mod 11
+ */
+ m3 = 0;
+ m5 = 0;
+ m7 = 0;
+ m11 = 0;
+ for (u = 0; u < len; u ++) {
+ uint32_t w;
+
+ w = x[1 + u];
+ m3 += w << (u & 1);
+ m3 = (m3 & 0xFF) + (m3 >> 8);
+ m5 += w << ((4 - u) & 3);
+ m5 = (m5 & 0xFF) + (m5 >> 8);
+ m7 += w;
+ m7 = (m7 & 0x1FF) + (m7 >> 9);
+ m11 += w << (5 & -(u & 1));
+ m11 = (m11 & 0x3FF) + (m11 >> 10);
+ }
+
+ /*
+ * Maximum values of m* at this point:
+ * m3: 511
+ * m5: 2310
+ * m7: 510
+ * m11: 2047
+ * We use the same properties to make further reductions.
+ */
+
+ m3 = (m3 & 0x0F) + (m3 >> 4); /* max: 46 */
+ m3 = (m3 & 0x0F) + (m3 >> 4); /* max: 16 */
+ m3 = ((m3 * 43) >> 5) & 3;
+
+ m5 = (m5 & 0xFF) + (m5 >> 8); /* max: 263 */
+ m5 = (m5 & 0x0F) + (m5 >> 4); /* max: 30 */
+ m5 = (m5 & 0x0F) + (m5 >> 4); /* max: 15 */
+ m5 -= 10 & -GT(m5, 9);
+ m5 -= 5 & -GT(m5, 4);
+
+ m7 = (m7 & 0x3F) + (m7 >> 6); /* max: 69 */
+ m7 = (m7 & 7) + (m7 >> 3); /* max: 14 */
+ m7 = ((m7 * 147) >> 7) & 7;
+
+ /*
+ * 2^5 = 32 = -1 mod 11.
+ */
+ m11 = (m11 & 0x1F) + 66 - (m11 >> 5); /* max: 97 */
+ m11 -= 88 & -GT(m11, 87);
+ m11 -= 44 & -GT(m11, 43);
+ m11 -= 22 & -GT(m11, 21);
+ m11 -= 11 & -GT(m11, 10);
+
+ /*
+ * If any of these modulo is 0, then the candidate is
+ * not prime. Also, if pubexp is 3, 5, 7 or 11, and the
+ * corresponding modulus is 1, then the candidate must
+ * be rejected, because we need e to be invertible
+ * modulo p-1. We can use simple comparisons here
+ * because they won't leak information on a candidate
+ * that we keep, only on one that we reject (and is thus
+ * not secret).
+ */
+ if (m3 == 0 || m5 == 0 || m7 == 0 || m11 == 0) {
+ continue;
+ }
+ if ((pubexp == 3 && m3 == 1)
+ || (pubexp == 5 && m5 == 5)
+ || (pubexp == 7 && m5 == 7)
+ || (pubexp == 11 && m5 == 11))
+ {
+ continue;
+ }
+
+ /*
+ * More trial divisions.
+ */
+ if (!trial_divisions(x, t)) {
+ continue;
+ }
+
+ /*
+ * Miller-Rabin algorithm. Since we selected a random
+ * integer, not a maliciously crafted integer, we can use
+ * relatively few rounds to lower the risk of a false
+ * positive (i.e. declaring prime a non-prime) under
+ * 2^(-80). It is not useful to lower the probability much
+ * below that, since that would be substantially below
+ * the probability of the hardware misbehaving. Sufficient
+ * numbers of rounds are extracted from the Handbook of
+ * Applied Cryptography, note 4.49 (page 149).
+ *
+ * Since we work on the encoded size (esize), we need to
+ * compare with encoded thresholds.
+ */
+ if (esize < 320) {
+ rounds = 12;
+ } else if (esize < 480) {
+ rounds = 9;
+ } else if (esize < 693) {
+ rounds = 6;
+ } else if (esize < 906) {
+ rounds = 4;
+ } else if (esize < 1386) {
+ rounds = 3;
+ } else {
+ rounds = 2;
+ }
+
+ if (miller_rabin(rng, x, rounds, t, tlen)) {
+ return;
+ }
+ }
+}
+
+/*
+ * Let p be a prime (p > 2^33, p = 3 mod 4). Let m = (p-1)/2, provided
+ * as parameter (with announced bit length equal to that of p). This
+ * function computes d = 1/e mod p-1 (for an odd integer e). Returned
+ * value is 1 on success, 0 on error (an error is reported if e is not
+ * invertible modulo p-1).
+ *
+ * The temporary buffer (t) must have room for at least 4 integers of
+ * the size of p.
+ */
+static uint32_t
+invert_pubexp(uint16_t *d, const uint16_t *m, uint32_t e, uint16_t *t)
+{
+ uint16_t *f;
+ uint32_t r;
+
+ f = t;
+ t += 1 + ((m[0] + 15) >> 4);
+
+ /*
+ * Compute d = 1/e mod m. Since p = 3 mod 4, m is odd.
+ */
+ br_i15_zero(d, m[0]);
+ d[1] = 1;
+ br_i15_zero(f, m[0]);
+ f[1] = e & 0x7FFF;
+ f[2] = (e >> 15) & 0x7FFF;
+ f[3] = e >> 30;
+ r = br_i15_moddiv(d, f, m, br_i15_ninv15(m[1]), t);
+
+ /*
+ * We really want d = 1/e mod p-1, with p = 2m. By the CRT,
+ * the result is either the d we got, or d + m.
+ *
+ * Let's write e*d = 1 + k*m, for some integer k. Integers e
+ * and m are odd. If d is odd, then e*d is odd, which implies
+ * that k must be even; in that case, e*d = 1 + (k/2)*2m, and
+ * thus d is already fine. Conversely, if d is even, then k
+ * is odd, and we must add m to d in order to get the correct
+ * result.
+ */
+ br_i15_add(d, m, (uint32_t)(1 - (d[1] & 1)));
+
+ return r;
+}
+
+/*
+ * Swap two buffers in RAM. They must be disjoint.
+ */
+static void
+bufswap(void *b1, void *b2, size_t len)
+{
+ size_t u;
+ unsigned char *buf1, *buf2;
+
+ buf1 = b1;
+ buf2 = b2;
+ for (u = 0; u < len; u ++) {
+ unsigned w;
+
+ w = buf1[u];
+ buf1[u] = buf2[u];
+ buf2[u] = w;
+ }
+}
+
+/* see bearssl_rsa.h */
+uint32_t
+br_rsa_i15_keygen(const br_prng_class **rng,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp)
+{
+ uint32_t esize_p, esize_q;
+ size_t plen, qlen, tlen;
+ uint16_t *p, *q, *t;
+ uint16_t tmp[TEMPS];
+ uint32_t r;
+
+ if (size < BR_MIN_RSA_SIZE || size > BR_MAX_RSA_SIZE) {
+ return 0;
+ }
+ if (pubexp == 0) {
+ pubexp = 3;
+ } else if (pubexp == 1 || (pubexp & 1) == 0) {
+ return 0;
+ }
+
+ esize_p = (size + 1) >> 1;
+ esize_q = size - esize_p;
+ sk->n_bitlen = size;
+ sk->p = kbuf_priv;
+ sk->plen = (esize_p + 7) >> 3;
+ sk->q = sk->p + sk->plen;
+ sk->qlen = (esize_q + 7) >> 3;
+ sk->dp = sk->q + sk->qlen;
+ sk->dplen = sk->plen;
+ sk->dq = sk->dp + sk->dplen;
+ sk->dqlen = sk->qlen;
+ sk->iq = sk->dq + sk->dqlen;
+ sk->iqlen = sk->plen;
+
+ if (pk != NULL) {
+ pk->n = kbuf_pub;
+ pk->nlen = (size + 7) >> 3;
+ pk->e = pk->n + pk->nlen;
+ pk->elen = 4;
+ br_enc32be(pk->e, pubexp);
+ while (*pk->e == 0) {
+ pk->e ++;
+ pk->elen --;
+ }
+ }
+
+ /*
+ * We now switch to encoded sizes.
+ *
+ * floor((x * 17477) / (2^18)) is equal to floor(x/15) for all
+ * integers x from 0 to 23833.
+ */
+ esize_p += MUL15(esize_p, 17477) >> 18;
+ esize_q += MUL15(esize_q, 17477) >> 18;
+ plen = (esize_p + 15) >> 4;
+ qlen = (esize_q + 15) >> 4;
+ p = tmp;
+ q = p + 1 + plen;
+ t = q + 1 + qlen;
+ tlen = ((sizeof tmp) / sizeof(uint16_t)) - (2 + plen + qlen);
+
+ /*
+ * When looking for primes p and q, we temporarily divide
+ * candidates by 2, in order to compute the inverse of the
+ * public exponent.
+ */
+
+ for (;;) {
+ mkprime(rng, p, esize_p, pubexp, t, tlen);
+ br_i15_rshift(p, 1);
+ if (invert_pubexp(t, p, pubexp, t + 1 + plen)) {
+ br_i15_add(p, p, 1);
+ p[1] |= 1;
+ br_i15_encode(sk->p, sk->plen, p);
+ br_i15_encode(sk->dp, sk->dplen, t);
+ break;
+ }
+ }
+
+ for (;;) {
+ mkprime(rng, q, esize_q, pubexp, t, tlen);
+ br_i15_rshift(q, 1);
+ if (invert_pubexp(t, q, pubexp, t + 1 + qlen)) {
+ br_i15_add(q, q, 1);
+ q[1] |= 1;
+ br_i15_encode(sk->q, sk->qlen, q);
+ br_i15_encode(sk->dq, sk->dqlen, t);
+ break;
+ }
+ }
+
+ /*
+ * If p and q have the same size, then it is possible that q > p
+ * (when the target modulus size is odd, we generate p with a
+ * greater bit length than q). If q > p, we want to swap p and q
+ * (and also dp and dq) for two reasons:
+ * - The final step below (inversion of q modulo p) is easier if
+ * p > q.
+ * - While BearSSL's RSA code is perfectly happy with RSA keys such
+ * that p < q, some other implementations have restrictions and
+ * require p > q.
+ *
+ * Note that we can do a simple non-constant-time swap here,
+ * because the only information we leak here is that we insist on
+ * returning p and q such that p > q, which is not a secret.
+ */
+ if (esize_p == esize_q && br_i15_sub(p, q, 0) == 1) {
+ bufswap(p, q, (1 + plen) * sizeof *p);
+ bufswap(sk->p, sk->q, sk->plen);
+ bufswap(sk->dp, sk->dq, sk->dplen);
+ }
+
+ /*
+ * We have produced p, q, dp and dq. We can now compute iq = 1/d mod p.
+ *
+ * We ensured that p >= q, so this is just a matter of updating the
+ * header word for q (and possibly adding an extra word).
+ *
+ * Theoretically, the call below may fail, in case we were
+ * extraordinarily unlucky, and p = q. Another failure case is if
+ * Miller-Rabin failed us _twice_, and p and q are non-prime and
+ * have a factor is common. We report the error mostly because it
+ * is cheap and we can, but in practice this never happens (or, at
+ * least, it happens way less often than hardware glitches).
+ */
+ q[0] = p[0];
+ if (plen > qlen) {
+ q[plen] = 0;
+ t ++;
+ tlen --;
+ }
+ br_i15_zero(t, p[0]);
+ t[1] = 1;
+ r = br_i15_moddiv(t, q, p, br_i15_ninv15(p[1]), t + 1 + plen);
+ br_i15_encode(sk->iq, sk->iqlen, t);
+
+ /*
+ * Compute the public modulus too, if required.
+ */
+ if (pk != NULL) {
+ br_i15_zero(t, p[0]);
+ br_i15_mulacc(t, p, q);
+ br_i15_encode(pk->n, pk->nlen, t);
+ }
+
+ return r;
+}
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/* see bearssl_rsa.h */
+uint32_t
+br_rsa_i31_keygen(const br_prng_class **rng,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp)
+{
+ return br_rsa_i31_keygen_inner(rng,
+ sk, kbuf_priv, pk, kbuf_pub, size, pubexp,
+ &br_i31_modpow_opt);
+}
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+/*
+ * Make a random integer of the provided size. The size is encoded.
+ * The header word is untouched.
+ */
+static void
+mkrand(const br_prng_class **rng, uint32_t *x, uint32_t esize)
+{
+ size_t u, len;
+ unsigned m;
+
+ len = (esize + 31) >> 5;
+ (*rng)->generate(rng, x + 1, len * sizeof(uint32_t));
+ for (u = 1; u < len; u ++) {
+ x[u] &= 0x7FFFFFFF;
+ }
+ m = esize & 31;
+ if (m == 0) {
+ x[len] &= 0x7FFFFFFF;
+ } else {
+ x[len] &= 0x7FFFFFFF >> (31 - m);
+ }
+}
+
+/*
+ * This is the big-endian unsigned representation of the product of
+ * all small primes from 13 to 1481.
+ */
+static const unsigned char SMALL_PRIMES[] = {
+ 0x2E, 0xAB, 0x92, 0xD1, 0x8B, 0x12, 0x47, 0x31, 0x54, 0x0A,
+ 0x99, 0x5D, 0x25, 0x5E, 0xE2, 0x14, 0x96, 0x29, 0x1E, 0xB7,
+ 0x78, 0x70, 0xCC, 0x1F, 0xA5, 0xAB, 0x8D, 0x72, 0x11, 0x37,
+ 0xFB, 0xD8, 0x1E, 0x3F, 0x5B, 0x34, 0x30, 0x17, 0x8B, 0xE5,
+ 0x26, 0x28, 0x23, 0xA1, 0x8A, 0xA4, 0x29, 0xEA, 0xFD, 0x9E,
+ 0x39, 0x60, 0x8A, 0xF3, 0xB5, 0xA6, 0xEB, 0x3F, 0x02, 0xB6,
+ 0x16, 0xC3, 0x96, 0x9D, 0x38, 0xB0, 0x7D, 0x82, 0x87, 0x0C,
+ 0xF7, 0xBE, 0x24, 0xE5, 0x5F, 0x41, 0x04, 0x79, 0x76, 0x40,
+ 0xE7, 0x00, 0x22, 0x7E, 0xB5, 0x85, 0x7F, 0x8D, 0x01, 0x50,
+ 0xE9, 0xD3, 0x29, 0x42, 0x08, 0xB3, 0x51, 0x40, 0x7B, 0xD7,
+ 0x8D, 0xCC, 0x10, 0x01, 0x64, 0x59, 0x28, 0xB6, 0x53, 0xF3,
+ 0x50, 0x4E, 0xB1, 0xF2, 0x58, 0xCD, 0x6E, 0xF5, 0x56, 0x3E,
+ 0x66, 0x2F, 0xD7, 0x07, 0x7F, 0x52, 0x4C, 0x13, 0x24, 0xDC,
+ 0x8E, 0x8D, 0xCC, 0xED, 0x77, 0xC4, 0x21, 0xD2, 0xFD, 0x08,
+ 0xEA, 0xD7, 0xC0, 0x5C, 0x13, 0x82, 0x81, 0x31, 0x2F, 0x2B,
+ 0x08, 0xE4, 0x80, 0x04, 0x7A, 0x0C, 0x8A, 0x3C, 0xDC, 0x22,
+ 0xE4, 0x5A, 0x7A, 0xB0, 0x12, 0x5E, 0x4A, 0x76, 0x94, 0x77,
+ 0xC2, 0x0E, 0x92, 0xBA, 0x8A, 0xA0, 0x1F, 0x14, 0x51, 0x1E,
+ 0x66, 0x6C, 0x38, 0x03, 0x6C, 0xC7, 0x4A, 0x4B, 0x70, 0x80,
+ 0xAF, 0xCA, 0x84, 0x51, 0xD8, 0xD2, 0x26, 0x49, 0xF5, 0xA8,
+ 0x5E, 0x35, 0x4B, 0xAC, 0xCE, 0x29, 0x92, 0x33, 0xB7, 0xA2,
+ 0x69, 0x7D, 0x0C, 0xE0, 0x9C, 0xDB, 0x04, 0xD6, 0xB4, 0xBC,
+ 0x39, 0xD7, 0x7F, 0x9E, 0x9D, 0x78, 0x38, 0x7F, 0x51, 0x54,
+ 0x50, 0x8B, 0x9E, 0x9C, 0x03, 0x6C, 0xF5, 0x9D, 0x2C, 0x74,
+ 0x57, 0xF0, 0x27, 0x2A, 0xC3, 0x47, 0xCA, 0xB9, 0xD7, 0x5C,
+ 0xFF, 0xC2, 0xAC, 0x65, 0x4E, 0xBD
+};
+
+/*
+ * We need temporary values for at least 7 integers of the same size
+ * as a factor (including header word); more space helps with performance
+ * (in modular exponentiations), but we much prefer to remain under
+ * 2 kilobytes in total, to save stack space. The macro TEMPS below
+ * exceeds 512 (which is a count in 32-bit words) when BR_MAX_RSA_SIZE
+ * is greater than 4464 (default value is 4096, so the 2-kB limit is
+ * maintained unless BR_MAX_RSA_SIZE was modified).
+ */
+#define MAX(x, y) ((x) > (y) ? (x) : (y))
+#define ROUND2(x) ((((x) + 1) >> 1) << 1)
+
+#define TEMPS MAX(512, ROUND2(7 * ((((BR_MAX_RSA_SIZE + 1) >> 1) + 61) / 31)))
+
+/*
+ * Perform trial division on a candidate prime. This computes
+ * y = SMALL_PRIMES mod x, then tries to compute y/y mod x. The
+ * br_i31_moddiv() function will report an error if y is not invertible
+ * modulo x. Returned value is 1 on success (none of the small primes
+ * divides x), 0 on error (a non-trivial GCD is obtained).
+ *
+ * This function assumes that x is odd.
+ */
+static uint32_t
+trial_divisions(const uint32_t *x, uint32_t *t)
+{
+ uint32_t *y;
+ uint32_t x0i;
+
+ y = t;
+ t += 1 + ((x[0] + 31) >> 5);
+ x0i = br_i31_ninv31(x[1]);
+ br_i31_decode_reduce(y, SMALL_PRIMES, sizeof SMALL_PRIMES, x);
+ return br_i31_moddiv(y, y, x, x0i, t);
+}
+
+/*
+ * Perform n rounds of Miller-Rabin on the candidate prime x. This
+ * function assumes that x = 3 mod 4.
+ *
+ * Returned value is 1 on success (all rounds completed successfully),
+ * 0 otherwise.
+ */
+static uint32_t
+miller_rabin(const br_prng_class **rng, const uint32_t *x, int n,
+ uint32_t *t, size_t tlen, br_i31_modpow_opt_type mp31)
+{
+ /*
+ * Since x = 3 mod 4, the Miller-Rabin test is simple:
+ * - get a random base a (such that 1 < a < x-1)
+ * - compute z = a^((x-1)/2) mod x
+ * - if z != 1 and z != x-1, the number x is composite
+ *
+ * We generate bases 'a' randomly with a size which is
+ * one bit less than x, which ensures that a < x-1. It
+ * is not useful to verify that a > 1 because the probability
+ * that we get a value a equal to 0 or 1 is much smaller
+ * than the probability of our Miller-Rabin tests not to
+ * detect a composite, which is already quite smaller than the
+ * probability of the hardware misbehaving and return a
+ * composite integer because of some glitch (e.g. bad RAM
+ * or ill-timed cosmic ray).
+ */
+ unsigned char *xm1d2;
+ size_t xlen, xm1d2_len, xm1d2_len_u32, u;
+ uint32_t asize;
+ unsigned cc;
+ uint32_t x0i;
+
+ /*
+ * Compute (x-1)/2 (encoded).
+ */
+ xm1d2 = (unsigned char *)t;
+ xm1d2_len = ((x[0] - (x[0] >> 5)) + 7) >> 3;
+ br_i31_encode(xm1d2, xm1d2_len, x);
+ cc = 0;
+ for (u = 0; u < xm1d2_len; u ++) {
+ unsigned w;
+
+ w = xm1d2[u];
+ xm1d2[u] = (unsigned char)((w >> 1) | cc);
+ cc = w << 7;
+ }
+
+ /*
+ * We used some words of the provided buffer for (x-1)/2.
+ */
+ xm1d2_len_u32 = (xm1d2_len + 3) >> 2;
+ t += xm1d2_len_u32;
+ tlen -= xm1d2_len_u32;
+
+ xlen = (x[0] + 31) >> 5;
+ asize = x[0] - 1 - EQ0(x[0] & 31);
+ x0i = br_i31_ninv31(x[1]);
+ while (n -- > 0) {
+ uint32_t *a, *t2;
+ uint32_t eq1, eqm1;
+ size_t t2len;
+
+ /*
+ * Generate a random base. We don't need the base to be
+ * really uniform modulo x, so we just get a random
+ * number which is one bit shorter than x.
+ */
+ a = t;
+ a[0] = x[0];
+ a[xlen] = 0;
+ mkrand(rng, a, asize);
+
+ /*
+ * Compute a^((x-1)/2) mod x. We assume here that the
+ * function will not fail (the temporary array is large
+ * enough).
+ */
+ t2 = t + 1 + xlen;
+ t2len = tlen - 1 - xlen;
+ if ((t2len & 1) != 0) {
+ /*
+ * Since the source array is 64-bit aligned and
+ * has an even number of elements (TEMPS), we
+ * can use the parity of the remaining length to
+ * detect and adjust alignment.
+ */
+ t2 ++;
+ t2len --;
+ }
+ mp31(a, xm1d2, xm1d2_len, x, x0i, t2, t2len);
+
+ /*
+ * We must obtain either 1 or x-1. Note that x is odd,
+ * hence x-1 differs from x only in its low word (no
+ * carry).
+ */
+ eq1 = a[1] ^ 1;
+ eqm1 = a[1] ^ (x[1] - 1);
+ for (u = 2; u <= xlen; u ++) {
+ eq1 |= a[u];
+ eqm1 |= a[u] ^ x[u];
+ }
+
+ if ((EQ0(eq1) | EQ0(eqm1)) == 0) {
+ return 0;
+ }
+ }
+ return 1;
+}
+
+/*
+ * Create a random prime of the provided size. 'size' is the _encoded_
+ * bit length. The two top bits and the two bottom bits are set to 1.
+ */
+static void
+mkprime(const br_prng_class **rng, uint32_t *x, uint32_t esize,
+ uint32_t pubexp, uint32_t *t, size_t tlen, br_i31_modpow_opt_type mp31)
+{
+ size_t len;
+
+ x[0] = esize;
+ len = (esize + 31) >> 5;
+ for (;;) {
+ size_t u;
+ uint32_t m3, m5, m7, m11;
+ int rounds, s7, s11;
+
+ /*
+ * Generate random bits. We force the two top bits and the
+ * two bottom bits to 1.
+ */
+ mkrand(rng, x, esize);
+ if ((esize & 31) == 0) {
+ x[len] |= 0x60000000;
+ } else if ((esize & 31) == 1) {
+ x[len] |= 0x00000001;
+ x[len - 1] |= 0x40000000;
+ } else {
+ x[len] |= 0x00000003 << ((esize & 31) - 2);
+ }
+ x[1] |= 0x00000003;
+
+ /*
+ * Trial division with low primes (3, 5, 7 and 11). We
+ * use the following properties:
+ *
+ * 2^2 = 1 mod 3
+ * 2^4 = 1 mod 5
+ * 2^3 = 1 mod 7
+ * 2^10 = 1 mod 11
+ */
+ m3 = 0;
+ m5 = 0;
+ m7 = 0;
+ m11 = 0;
+ s7 = 0;
+ s11 = 0;
+ for (u = 0; u < len; u ++) {
+ uint32_t w, w3, w5, w7, w11;
+
+ w = x[1 + u];
+ w3 = (w & 0xFFFF) + (w >> 16); /* max: 98302 */
+ w5 = (w & 0xFFFF) + (w >> 16); /* max: 98302 */
+ w7 = (w & 0x7FFF) + (w >> 15); /* max: 98302 */
+ w11 = (w & 0xFFFFF) + (w >> 20); /* max: 1050622 */
+
+ m3 += w3 << (u & 1);
+ m3 = (m3 & 0xFF) + (m3 >> 8); /* max: 1025 */
+
+ m5 += w5 << ((4 - u) & 3);
+ m5 = (m5 & 0xFFF) + (m5 >> 12); /* max: 4479 */
+
+ m7 += w7 << s7;
+ m7 = (m7 & 0x1FF) + (m7 >> 9); /* max: 1280 */
+ if (++ s7 == 3) {
+ s7 = 0;
+ }
+
+ m11 += w11 << s11;
+ if (++ s11 == 10) {
+ s11 = 0;
+ }
+ m11 = (m11 & 0x3FF) + (m11 >> 10); /* max: 526847 */
+ }
+
+ m3 = (m3 & 0x3F) + (m3 >> 6); /* max: 78 */
+ m3 = (m3 & 0x0F) + (m3 >> 4); /* max: 18 */
+ m3 = ((m3 * 43) >> 5) & 3;
+
+ m5 = (m5 & 0xFF) + (m5 >> 8); /* max: 271 */
+ m5 = (m5 & 0x0F) + (m5 >> 4); /* max: 31 */
+ m5 -= 20 & -GT(m5, 19);
+ m5 -= 10 & -GT(m5, 9);
+ m5 -= 5 & -GT(m5, 4);
+
+ m7 = (m7 & 0x3F) + (m7 >> 6); /* max: 82 */
+ m7 = (m7 & 0x07) + (m7 >> 3); /* max: 16 */
+ m7 = ((m7 * 147) >> 7) & 7;
+
+ /*
+ * 2^5 = 32 = -1 mod 11.
+ */
+ m11 = (m11 & 0x3FF) + (m11 >> 10); /* max: 1536 */
+ m11 = (m11 & 0x3FF) + (m11 >> 10); /* max: 1023 */
+ m11 = (m11 & 0x1F) + 33 - (m11 >> 5); /* max: 64 */
+ m11 -= 44 & -GT(m11, 43);
+ m11 -= 22 & -GT(m11, 21);
+ m11 -= 11 & -GT(m11, 10);
+
+ /*
+ * If any of these modulo is 0, then the candidate is
+ * not prime. Also, if pubexp is 3, 5, 7 or 11, and the
+ * corresponding modulus is 1, then the candidate must
+ * be rejected, because we need e to be invertible
+ * modulo p-1. We can use simple comparisons here
+ * because they won't leak information on a candidate
+ * that we keep, only on one that we reject (and is thus
+ * not secret).
+ */
+ if (m3 == 0 || m5 == 0 || m7 == 0 || m11 == 0) {
+ continue;
+ }
+ if ((pubexp == 3 && m3 == 1)
+ || (pubexp == 5 && m5 == 5)
+ || (pubexp == 7 && m5 == 7)
+ || (pubexp == 11 && m5 == 11))
+ {
+ continue;
+ }
+
+ /*
+ * More trial divisions.
+ */
+ if (!trial_divisions(x, t)) {
+ continue;
+ }
+
+ /*
+ * Miller-Rabin algorithm. Since we selected a random
+ * integer, not a maliciously crafted integer, we can use
+ * relatively few rounds to lower the risk of a false
+ * positive (i.e. declaring prime a non-prime) under
+ * 2^(-80). It is not useful to lower the probability much
+ * below that, since that would be substantially below
+ * the probability of the hardware misbehaving. Sufficient
+ * numbers of rounds are extracted from the Handbook of
+ * Applied Cryptography, note 4.49 (page 149).
+ *
+ * Since we work on the encoded size (esize), we need to
+ * compare with encoded thresholds.
+ */
+ if (esize < 309) {
+ rounds = 12;
+ } else if (esize < 464) {
+ rounds = 9;
+ } else if (esize < 670) {
+ rounds = 6;
+ } else if (esize < 877) {
+ rounds = 4;
+ } else if (esize < 1341) {
+ rounds = 3;
+ } else {
+ rounds = 2;
+ }
+
+ if (miller_rabin(rng, x, rounds, t, tlen, mp31)) {
+ return;
+ }
+ }
+}
+
+/*
+ * Let p be a prime (p > 2^33, p = 3 mod 4). Let m = (p-1)/2, provided
+ * as parameter (with announced bit length equal to that of p). This
+ * function computes d = 1/e mod p-1 (for an odd integer e). Returned
+ * value is 1 on success, 0 on error (an error is reported if e is not
+ * invertible modulo p-1).
+ *
+ * The temporary buffer (t) must have room for at least 4 integers of
+ * the size of p.
+ */
+static uint32_t
+invert_pubexp(uint32_t *d, const uint32_t *m, uint32_t e, uint32_t *t)
+{
+ uint32_t *f;
+ uint32_t r;
+
+ f = t;
+ t += 1 + ((m[0] + 31) >> 5);
+
+ /*
+ * Compute d = 1/e mod m. Since p = 3 mod 4, m is odd.
+ */
+ br_i31_zero(d, m[0]);
+ d[1] = 1;
+ br_i31_zero(f, m[0]);
+ f[1] = e & 0x7FFFFFFF;
+ f[2] = e >> 31;
+ r = br_i31_moddiv(d, f, m, br_i31_ninv31(m[1]), t);
+
+ /*
+ * We really want d = 1/e mod p-1, with p = 2m. By the CRT,
+ * the result is either the d we got, or d + m.
+ *
+ * Let's write e*d = 1 + k*m, for some integer k. Integers e
+ * and m are odd. If d is odd, then e*d is odd, which implies
+ * that k must be even; in that case, e*d = 1 + (k/2)*2m, and
+ * thus d is already fine. Conversely, if d is even, then k
+ * is odd, and we must add m to d in order to get the correct
+ * result.
+ */
+ br_i31_add(d, m, (uint32_t)(1 - (d[1] & 1)));
+
+ return r;
+}
+
+/*
+ * Swap two buffers in RAM. They must be disjoint.
+ */
+static void
+bufswap(void *b1, void *b2, size_t len)
+{
+ size_t u;
+ unsigned char *buf1, *buf2;
+
+ buf1 = b1;
+ buf2 = b2;
+ for (u = 0; u < len; u ++) {
+ unsigned w;
+
+ w = buf1[u];
+ buf1[u] = buf2[u];
+ buf2[u] = w;
+ }
+}
+
+/* see inner.h */
+uint32_t
+br_rsa_i31_keygen_inner(const br_prng_class **rng,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp, br_i31_modpow_opt_type mp31)
+{
+ uint32_t esize_p, esize_q;
+ size_t plen, qlen, tlen;
+ uint32_t *p, *q, *t;
+ union {
+ uint32_t t32[TEMPS];
+ uint64_t t64[TEMPS >> 1]; /* for 64-bit alignment */
+ } tmp;
+ uint32_t r;
+
+ if (size < BR_MIN_RSA_SIZE || size > BR_MAX_RSA_SIZE) {
+ return 0;
+ }
+ if (pubexp == 0) {
+ pubexp = 3;
+ } else if (pubexp == 1 || (pubexp & 1) == 0) {
+ return 0;
+ }
+
+ esize_p = (size + 1) >> 1;
+ esize_q = size - esize_p;
+ sk->n_bitlen = size;
+ sk->p = kbuf_priv;
+ sk->plen = (esize_p + 7) >> 3;
+ sk->q = sk->p + sk->plen;
+ sk->qlen = (esize_q + 7) >> 3;
+ sk->dp = sk->q + sk->qlen;
+ sk->dplen = sk->plen;
+ sk->dq = sk->dp + sk->dplen;
+ sk->dqlen = sk->qlen;
+ sk->iq = sk->dq + sk->dqlen;
+ sk->iqlen = sk->plen;
+
+ if (pk != NULL) {
+ pk->n = kbuf_pub;
+ pk->nlen = (size + 7) >> 3;
+ pk->e = pk->n + pk->nlen;
+ pk->elen = 4;
+ br_enc32be(pk->e, pubexp);
+ while (*pk->e == 0) {
+ pk->e ++;
+ pk->elen --;
+ }
+ }
+
+ /*
+ * We now switch to encoded sizes.
+ *
+ * floor((x * 16913) / (2^19)) is equal to floor(x/31) for all
+ * integers x from 0 to 34966; the intermediate product fits on
+ * 30 bits, thus we can use MUL31().
+ */
+ esize_p += MUL31(esize_p, 16913) >> 19;
+ esize_q += MUL31(esize_q, 16913) >> 19;
+ plen = (esize_p + 31) >> 5;
+ qlen = (esize_q + 31) >> 5;
+ p = tmp.t32;
+ q = p + 1 + plen;
+ t = q + 1 + qlen;
+ tlen = ((sizeof tmp.t32) / sizeof(uint32_t)) - (2 + plen + qlen);
+
+ /*
+ * When looking for primes p and q, we temporarily divide
+ * candidates by 2, in order to compute the inverse of the
+ * public exponent.
+ */
+
+ for (;;) {
+ mkprime(rng, p, esize_p, pubexp, t, tlen, mp31);
+ br_i31_rshift(p, 1);
+ if (invert_pubexp(t, p, pubexp, t + 1 + plen)) {
+ br_i31_add(p, p, 1);
+ p[1] |= 1;
+ br_i31_encode(sk->p, sk->plen, p);
+ br_i31_encode(sk->dp, sk->dplen, t);
+ break;
+ }
+ }
+
+ for (;;) {
+ mkprime(rng, q, esize_q, pubexp, t, tlen, mp31);
+ br_i31_rshift(q, 1);
+ if (invert_pubexp(t, q, pubexp, t + 1 + qlen)) {
+ br_i31_add(q, q, 1);
+ q[1] |= 1;
+ br_i31_encode(sk->q, sk->qlen, q);
+ br_i31_encode(sk->dq, sk->dqlen, t);
+ break;
+ }
+ }
+
+ /*
+ * If p and q have the same size, then it is possible that q > p
+ * (when the target modulus size is odd, we generate p with a
+ * greater bit length than q). If q > p, we want to swap p and q
+ * (and also dp and dq) for two reasons:
+ * - The final step below (inversion of q modulo p) is easier if
+ * p > q.
+ * - While BearSSL's RSA code is perfectly happy with RSA keys such
+ * that p < q, some other implementations have restrictions and
+ * require p > q.
+ *
+ * Note that we can do a simple non-constant-time swap here,
+ * because the only information we leak here is that we insist on
+ * returning p and q such that p > q, which is not a secret.
+ */
+ if (esize_p == esize_q && br_i31_sub(p, q, 0) == 1) {
+ bufswap(p, q, (1 + plen) * sizeof *p);
+ bufswap(sk->p, sk->q, sk->plen);
+ bufswap(sk->dp, sk->dq, sk->dplen);
+ }
+
+ /*
+ * We have produced p, q, dp and dq. We can now compute iq = 1/d mod p.
+ *
+ * We ensured that p >= q, so this is just a matter of updating the
+ * header word for q (and possibly adding an extra word).
+ *
+ * Theoretically, the call below may fail, in case we were
+ * extraordinarily unlucky, and p = q. Another failure case is if
+ * Miller-Rabin failed us _twice_, and p and q are non-prime and
+ * have a factor is common. We report the error mostly because it
+ * is cheap and we can, but in practice this never happens (or, at
+ * least, it happens way less often than hardware glitches).
+ */
+ q[0] = p[0];
+ if (plen > qlen) {
+ q[plen] = 0;
+ t ++;
+ tlen --;
+ }
+ br_i31_zero(t, p[0]);
+ t[1] = 1;
+ r = br_i31_moddiv(t, q, p, br_i31_ninv31(p[1]), t + 1 + plen);
+ br_i31_encode(sk->iq, sk->iqlen, t);
+
+ /*
+ * Compute the public modulus too, if required.
+ */
+ if (pk != NULL) {
+ br_i31_zero(t, p[0]);
+ br_i31_mulacc(t, p, q);
+ br_i31_encode(pk->n, pk->nlen, t);
+ }
+
+ return r;
+}
--- /dev/null
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+#if BR_INT128 || BR_UMUL128
+
+/* see bearssl_rsa.h */
+uint32_t
+br_rsa_i62_keygen(const br_prng_class **rng,
+ br_rsa_private_key *sk, unsigned char *kbuf_priv,
+ br_rsa_public_key *pk, unsigned char *kbuf_pub,
+ unsigned size, uint32_t pubexp)
+{
+ return br_rsa_i31_keygen_inner(rng,
+ sk, kbuf_priv, pk, kbuf_pub, size, pubexp,
+ &br_i62_modpow_opt_as_i31);
+}
+
+/* see bearssl_rsa.h */
+br_rsa_keygen
+br_rsa_i62_keygen_get()
+{
+ return &br_rsa_i62_keygen;
+}
+
+#else
+
+/* see bearssl_rsa.h */
+br_rsa_keygen
+br_rsa_i62_keygen_get()
+{
+ return 0;
+}
+
+#endif
fflush(stdout);
}
+static void
+test_RSA_keygen(const char *name, br_rsa_keygen kg,
+ br_rsa_pkcs1_sign sign, br_rsa_pkcs1_vrfy vrfy)
+{
+ br_hmac_drbg_context rng;
+ int i;
+
+ printf("Test %s: ", name);
+ fflush(stdout);
+
+ br_hmac_drbg_init(&rng, &br_sha256_vtable, "seed for RSA keygen", 19);
+
+ for (i = 0; i < 40; i ++) {
+ unsigned size;
+ uint32_t pubexp;
+ br_rsa_private_key sk;
+ br_rsa_public_key pk;
+ unsigned char kbuf_priv[BR_RSA_KBUF_PRIV_SIZE(2048)];
+ unsigned char kbuf_pub[BR_RSA_KBUF_PUB_SIZE(2048)];
+ uint32_t mod[256];
+ uint32_t cc;
+ size_t u, v;
+ unsigned char sig[257], hv[32], hv2[sizeof hv];
+ unsigned mask1, mask2;
+
+ if (i <= 35) {
+ size = 1024 + i;
+ pubexp = 17;
+ } else {
+ size = 2048;
+ pubexp = (i << 1) - 69;
+ }
+
+ if (!kg(&rng.vtable,
+ &sk, kbuf_priv, &pk, kbuf_pub, size, pubexp))
+ {
+ fprintf(stderr, "RSA key pair generation failure\n");
+ exit(EXIT_FAILURE);
+ }
+
+ for (u = pk.elen; u > 0; u --) {
+ if (pk.e[u - 1] != (pubexp & 0xFF)) {
+ fprintf(stderr, "wrong public exponent\n");
+ exit(EXIT_FAILURE);
+ }
+ pubexp >>= 8;
+ }
+ if (pubexp != 0) {
+ fprintf(stderr, "truncated public exponent\n");
+ exit(EXIT_FAILURE);
+ }
+
+ memset(mod, 0, sizeof mod);
+ for (u = 0; u < sk.plen; u ++) {
+ for (v = 0; v < sk.qlen; v ++) {
+ mod[u + v] += (uint32_t)sk.p[sk.plen - 1 - u]
+ * (uint32_t)sk.q[sk.qlen - 1 - v];
+ }
+ }
+ cc = 0;
+ for (u = 0; u < sk.plen + sk.qlen; u ++) {
+ mod[u] += cc;
+ cc = mod[u] >> 8;
+ mod[u] &= 0xFF;
+ }
+ for (u = 0; u < pk.nlen; u ++) {
+ if (mod[pk.nlen - 1 - u] != pk.n[u]) {
+ fprintf(stderr, "wrong modulus\n");
+ exit(EXIT_FAILURE);
+ }
+ }
+ if (sk.n_bitlen != size) {
+ fprintf(stderr, "wrong key size\n");
+ exit(EXIT_FAILURE);
+ }
+ if (pk.nlen != (size + 7) >> 3) {
+ fprintf(stderr, "wrong modulus size (bytes)\n");
+ exit(EXIT_FAILURE);
+ }
+ mask1 = 0x01 << ((size + 7) & 7);
+ mask2 = 0xFF & -mask1;
+ if ((pk.n[0] & mask2) != mask1) {
+ fprintf(stderr, "wrong modulus size (bits)\n");
+ exit(EXIT_FAILURE);
+ }
+
+ rng.vtable->generate(&rng.vtable, hv, sizeof hv);
+ memset(sig, 0, sizeof sig);
+ sig[pk.nlen] = 0x00;
+ if (!sign(BR_HASH_OID_SHA256, hv, sizeof hv, &sk, sig)) {
+ fprintf(stderr, "signature error\n");
+ exit(EXIT_FAILURE);
+ }
+ if (sig[pk.nlen] != 0x00) {
+ fprintf(stderr, "signature length error\n");
+ exit(EXIT_FAILURE);
+ }
+ if (!vrfy(sig, pk.nlen, BR_HASH_OID_SHA256, sizeof hv,
+ &pk, hv2))
+ {
+ fprintf(stderr, "signature verification error (1)\n");
+ exit(EXIT_FAILURE);
+ }
+ if (memcmp(hv, hv2, sizeof hv) != 0) {
+ fprintf(stderr, "signature verification error (2)\n");
+ exit(EXIT_FAILURE);
+ }
+
+ printf(".");
+ fflush(stdout);
+ }
+
+ printf(" done.\n");
+ fflush(stdout);
+}
+
static void
test_RSA_i15(void)
{
&br_rsa_i15_pkcs1_sign, &br_rsa_i15_pkcs1_vrfy);
test_RSA_OAEP("RSA i15 OAEP",
&br_rsa_i15_oaep_encrypt, &br_rsa_i15_oaep_decrypt);
+ test_RSA_keygen("RSA i15 keygen", &br_rsa_i15_keygen,
+ &br_rsa_i15_pkcs1_sign, &br_rsa_i15_pkcs1_vrfy);
}
static void
&br_rsa_i31_pkcs1_sign, &br_rsa_i31_pkcs1_vrfy);
test_RSA_OAEP("RSA i31 OAEP",
&br_rsa_i31_oaep_encrypt, &br_rsa_i31_oaep_decrypt);
+ test_RSA_keygen("RSA i31 keygen", &br_rsa_i31_keygen,
+ &br_rsa_i31_pkcs1_sign, &br_rsa_i31_pkcs1_vrfy);
}
static void
br_rsa_pkcs1_vrfy vrfy;
br_rsa_oaep_encrypt menc;
br_rsa_oaep_decrypt mdec;
+ br_rsa_keygen kgen;
pub = br_rsa_i62_public_get();
priv = br_rsa_i62_private_get();
vrfy = br_rsa_i62_pkcs1_vrfy_get();
menc = br_rsa_i62_oaep_encrypt_get();
mdec = br_rsa_i62_oaep_decrypt_get();
+ kgen = br_rsa_i62_keygen_get();
if (pub) {
- if (!priv || !sign || !vrfy || !menc || !mdec) {
+ if (!priv || !sign || !vrfy || !menc || !mdec || !kgen) {
fprintf(stderr, "Inconsistent i62 availability\n");
exit(EXIT_FAILURE);
}
test_RSA_core("RSA i62 core", pub, priv);
test_RSA_sign("RSA i62 sign", priv, sign, vrfy);
test_RSA_OAEP("RSA i62 OAEP", menc, mdec);
+ test_RSA_keygen("RSA i62 keygen", kgen, sign, vrfy);
} else {
- if (priv || sign || vrfy || menc || mdec) {
+ if (priv || sign || vrfy || menc || mdec || kgen) {
fprintf(stderr, "Inconsistent i62 availability\n");
exit(EXIT_FAILURE);
}
static void
test_speed_rsa_inner(char *name,
- br_rsa_public fpub, br_rsa_private fpriv)
+ br_rsa_public fpub, br_rsa_private fpriv, br_rsa_keygen kgen)
{
unsigned char tmp[sizeof RSA_N];
int i;
long num;
+ br_hmac_drbg_context rng;
memset(tmp, 'R', sizeof tmp);
tmp[0] = 0;
}
num <<= 1;
}
+
+ if (kgen == 0) {
+ printf("%-30s KEYGEN UNAVAILABLE\n", name);
+ fflush(stdout);
+ return;
+ }
+ br_hmac_drbg_init(&rng, &br_sha256_vtable, "RSA keygen seed", 15);
+
+ num = 10;
+ for (;;) {
+ clock_t begin, end;
+ double tt;
+ long k;
+
+ begin = clock();
+ for (k = num; k > 0; k --) {
+ br_rsa_private_key sk;
+ unsigned char kbuf[BR_RSA_KBUF_PRIV_SIZE(1024)];
+
+ kgen(&rng.vtable, &sk, kbuf, NULL, NULL, 1024, 0);
+ }
+ end = clock();
+ tt = (double)(end - begin) / CLOCKS_PER_SEC;
+ if (tt >= 10.0) {
+ printf("%-30s %8.2f kgen[1024]/s\n", name,
+ (double)num / tt);
+ fflush(stdout);
+ break;
+ }
+ num <<= 1;
+ }
+
+ num = 10;
+ for (;;) {
+ clock_t begin, end;
+ double tt;
+ long k;
+
+ begin = clock();
+ for (k = num; k > 0; k --) {
+ br_rsa_private_key sk;
+ unsigned char kbuf[BR_RSA_KBUF_PRIV_SIZE(2048)];
+
+ kgen(&rng.vtable, &sk, kbuf, NULL, NULL, 2048, 0);
+ }
+ end = clock();
+ tt = (double)(end - begin) / CLOCKS_PER_SEC;
+ if (tt >= 10.0) {
+ printf("%-30s %8.2f kgen[2048]/s\n", name,
+ (double)num / tt);
+ fflush(stdout);
+ break;
+ }
+ num <<= 1;
+ }
}
static void
test_speed_rsa_i15(void)
{
test_speed_rsa_inner("RSA i15",
- &br_rsa_i15_public, &br_rsa_i15_private);
+ &br_rsa_i15_public, &br_rsa_i15_private, &br_rsa_i15_keygen);
}
static void
test_speed_rsa_i31(void)
{
test_speed_rsa_inner("RSA i31",
- &br_rsa_i31_public, &br_rsa_i31_private);
+ &br_rsa_i31_public, &br_rsa_i31_private, &br_rsa_i31_keygen);
}
static void
test_speed_rsa_i32(void)
{
test_speed_rsa_inner("RSA i32",
- &br_rsa_i32_public, &br_rsa_i32_private);
+ &br_rsa_i32_public, &br_rsa_i32_private, 0);
}
static void
{
br_rsa_public pub;
br_rsa_private priv;
+ br_rsa_keygen kgen;
pub = br_rsa_i62_public_get();
priv = br_rsa_i62_private_get();
+ kgen = br_rsa_i62_keygen_get();
if (pub) {
- test_speed_rsa_inner("RSA i62", pub, priv);
+ test_speed_rsa_inner("RSA i62", pub, priv, kgen);
} else {
printf("%-30s UNAVAILABLE\n", "RSA i62");
}
}
}
+static int
+parse_rsa_spec(const char *kgen_spec, unsigned *size, uint32_t *pubexp)
+{
+ const char *p;
+ char *end;
+ unsigned long ul;
+
+ p = kgen_spec;
+ if (*p != 'r' && *p != 'R') {
+ return 0;
+ }
+ p ++;
+ if (*p != 's' && *p != 'S') {
+ return 0;
+ }
+ p ++;
+ if (*p != 'a' && *p != 'A') {
+ return 0;
+ }
+ p ++;
+ if (*p == 0) {
+ *size = 2048;
+ *pubexp = 3;
+ return 1;
+ } else if (*p != ':') {
+ return 0;
+ }
+ p ++;
+ ul = strtoul(p, &end, 10);
+ if (ul < 512 || ul > 32768) {
+ return 0;
+ }
+ *size = ul;
+ p = end;
+ if (*p == 0) {
+ *pubexp = 3;
+ return 1;
+ } else if (*p != ':') {
+ return 0;
+ }
+ p ++;
+ ul = strtoul(p, &end, 10);
+ if ((ul & 1) == 0 || ul == 1 || ((ul >> 30) >> 2) != 0) {
+ return 0;
+ }
+ *pubexp = ul;
+ if (*end != 0) {
+ return 0;
+ }
+ return 1;
+}
+
+static int
+keygen_rsa(unsigned size, uint32_t pubexp, int print_text, int print_C)
+{
+ br_hmac_drbg_context rng;
+ br_prng_seeder seeder;
+ br_rsa_keygen kg;
+ br_rsa_private_key sk;
+ unsigned char *kbuf_priv;
+ uint32_t r;
+
+ seeder = br_prng_seeder_system(NULL);
+ if (seeder == 0) {
+ fprintf(stderr, "ERROR: no system source of randomness\n");
+ return 0;
+ }
+ br_hmac_drbg_init(&rng, &br_sha256_vtable, NULL, 0);
+ if (!seeder(&rng.vtable)) {
+ fprintf(stderr, "ERROR: system source of randomness failed\n");
+ return 0;
+ }
+ kbuf_priv = xmalloc(BR_RSA_KBUF_PRIV_SIZE(size));
+ kg = br_rsa_keygen_get_default();
+ r = kg(&rng.vtable, &sk, kbuf_priv, NULL, NULL, size, pubexp);
+ if (!r) {
+ fprintf(stderr, "ERROR: RSA key pair generation failed\n");
+ } else {
+ print_rsa(&sk, print_text, print_C);
+ }
+ xfree(kbuf_priv);
+ return r;
+}
+
static int
decode_key(const unsigned char *buf, size_t len, int print_text, int print_C)
{
" -text print public key details (human-readable)\n");
fprintf(stderr,
" -C print public key details (C code)\n");
+ fprintf(stderr,
+" -gen spec generate a new key using the provided key specification\n");
+ fprintf(stderr,
+"Key specification begins with a key type, followed by optional parameters\n");
+ fprintf(stderr,
+"that depend on the key type, separated by colon characters:\n");
+ fprintf(stderr,
+" rsa[:size[:pubexep]] RSA key (defaults: size = 2048, pubexp = 3)\n");
}
/* see brssl.h */
unsigned char *buf;
size_t len;
pem_object *pos;
+ const char *kgen_spec;
retcode = 0;
verbose = 1;
num_files = 0;
buf = NULL;
pos = NULL;
+ kgen_spec = NULL;
for (i = 0; i < argc; i ++) {
const char *arg;
print_text = 1;
} else if (eqstr(arg, "-C")) {
print_C = 1;
+ } else if (eqstr(arg, "-gen")) {
+ if (++ i >= argc) {
+ fprintf(stderr,
+ "ERROR: no argument for '-gen'\n");
+ usage_skey();
+ goto skey_exit_error;
+ }
+ if (kgen_spec != NULL) {
+ fprintf(stderr,
+ "ERROR: multiple '-gen' options\n");
+ usage_skey();
+ goto skey_exit_error;
+ }
+ kgen_spec = argv[i];
+ argv[i] = NULL;
} else {
fprintf(stderr, "ERROR: unknown option: '%s'\n", arg);
usage_skey();
goto skey_exit_error;
}
}
- if (num_files == 0) {
+ if (kgen_spec != NULL) {
+ unsigned rsa_size;
+ uint32_t rsa_pubexp;
+
+ if (num_files != 0) {
+ fprintf(stderr,
+ "ERROR: key files provided while generating\n");
+ usage_skey();
+ goto skey_exit_error;
+ }
+
+ if (parse_rsa_spec(kgen_spec, &rsa_size, &rsa_pubexp)) {
+ keygen_rsa(rsa_size, rsa_pubexp, print_text, print_C);
+ } else {
+ fprintf(stderr,
+ "ERROR: unknown key specification: '%s'\n",
+ kgen_spec);
+ usage_skey();
+ goto skey_exit_error;
+ }
+ } else if (num_files == 0) {
fprintf(stderr, "ERROR: no private key provided\n");
usage_skey();
goto skey_exit_error;