Added new 64-bit implementations of Curve25519 and P-256.
authorThomas Pornin <pornin@bolet.org>
Tue, 18 Dec 2018 22:56:16 +0000 (23:56 +0100)
committerThomas Pornin <pornin@bolet.org>
Tue, 18 Dec 2018 22:56:16 +0000 (23:56 +0100)
inc/bearssl_ec.h
mk/Rules.mk
mk/mkrules.sh
src/ec/ec_c25519_m62.c
src/ec/ec_c25519_m64.c [new file with mode: 0644]
src/ec/ec_p256_m62.c [new file with mode: 0644]
src/ec/ec_p256_m64.c [new file with mode: 0644]
test/test_crypto.c
test/test_speed.c

index 6f50b6e..f954309 100644 (file)
@@ -451,6 +451,42 @@ extern const br_ec_impl br_ec_p256_m15;
  */
 extern const br_ec_impl br_ec_p256_m31;
 
+/**
+ * \brief EC implementation "m62" (specialised code) for P-256.
+ *
+ * This implementation uses custom code relying on multiplication of
+ * integers up to 64 bits, with a 128-bit result. This implementation is
+ * defined only on platforms that offer the 64x64->128 multiplication
+ * support; use `br_ec_p256_m62_get()` to dynamically obtain a pointer
+ * to that implementation.
+ */
+extern const br_ec_impl br_ec_p256_m62;
+
+/**
+ * \brief Get the "m62" implementation of P-256, if available.
+ *
+ * \return  the implementation, or 0.
+ */
+const br_ec_impl *br_ec_p256_m62_get(void);
+
+/**
+ * \brief EC implementation "m64" (specialised code) for P-256.
+ *
+ * This implementation uses custom code relying on multiplication of
+ * integers up to 64 bits, with a 128-bit result. This implementation is
+ * defined only on platforms that offer the 64x64->128 multiplication
+ * support; use `br_ec_p256_m64_get()` to dynamically obtain a pointer
+ * to that implementation.
+ */
+extern const br_ec_impl br_ec_p256_m64;
+
+/**
+ * \brief Get the "m64" implementation of P-256, if available.
+ *
+ * \return  the implementation, or 0.
+ */
+const br_ec_impl *br_ec_p256_m64_get(void);
+
 /**
  * \brief EC implementation "i15" (generic code) for Curve25519.
  *
@@ -531,6 +567,30 @@ extern const br_ec_impl br_ec_c25519_m62;
  */
 const br_ec_impl *br_ec_c25519_m62_get(void);
 
+/**
+ * \brief EC implementation "m64" (specialised code) for Curve25519.
+ *
+ * This implementation uses custom code relying on multiplication of
+ * integers up to 64 bits, with a 128-bit result. This implementation is
+ * defined only on platforms that offer the 64x64->128 multiplication
+ * support; use `br_ec_c25519_m64_get()` to dynamically obtain a pointer
+ * to that implementation. Due to the specificities of the curve
+ * definition, the following applies:
+ *
+ *   - `muladd()` is not implemented (the function returns 0 systematically).
+ *   - `order()` returns 2^255-1, since the point multiplication algorithm
+ *     accepts any 32-bit integer as input (it clears the top bit and low
+ *     three bits systematically).
+ */
+extern const br_ec_impl br_ec_c25519_m64;
+
+/**
+ * \brief Get the "m64" implementation of Curve25519, if available.
+ *
+ * \return  the implementation, or 0.
+ */
+const br_ec_impl *br_ec_c25519_m64_get(void);
+
 /**
  * \brief Aggregate EC implementation "m15".
  *
index bb37e46..7448bb4 100644 (file)
@@ -27,11 +27,14 @@ OBJ = \
  $(OBJDIR)$Pec_c25519_m15$O \
  $(OBJDIR)$Pec_c25519_m31$O \
  $(OBJDIR)$Pec_c25519_m62$O \
+ $(OBJDIR)$Pec_c25519_m64$O \
  $(OBJDIR)$Pec_curve25519$O \
  $(OBJDIR)$Pec_default$O \
  $(OBJDIR)$Pec_keygen$O \
  $(OBJDIR)$Pec_p256_m15$O \
  $(OBJDIR)$Pec_p256_m31$O \
+ $(OBJDIR)$Pec_p256_m62$O \
+ $(OBJDIR)$Pec_p256_m64$O \
  $(OBJDIR)$Pec_prime_i15$O \
  $(OBJDIR)$Pec_prime_i31$O \
  $(OBJDIR)$Pec_pubkey$O \
@@ -450,6 +453,9 @@ $(OBJDIR)$Pec_c25519_m31$O: src$Pec$Pec_c25519_m31.c $(HEADERSPRIV)
 $(OBJDIR)$Pec_c25519_m62$O: src$Pec$Pec_c25519_m62.c $(HEADERSPRIV)
        $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_c25519_m62$O src$Pec$Pec_c25519_m62.c
 
+$(OBJDIR)$Pec_c25519_m64$O: src$Pec$Pec_c25519_m64.c $(HEADERSPRIV)
+       $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_c25519_m64$O src$Pec$Pec_c25519_m64.c
+
 $(OBJDIR)$Pec_curve25519$O: src$Pec$Pec_curve25519.c $(HEADERSPRIV)
        $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_curve25519$O src$Pec$Pec_curve25519.c
 
@@ -465,6 +471,12 @@ $(OBJDIR)$Pec_p256_m15$O: src$Pec$Pec_p256_m15.c $(HEADERSPRIV)
 $(OBJDIR)$Pec_p256_m31$O: src$Pec$Pec_p256_m31.c $(HEADERSPRIV)
        $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_p256_m31$O src$Pec$Pec_p256_m31.c
 
+$(OBJDIR)$Pec_p256_m62$O: src$Pec$Pec_p256_m62.c $(HEADERSPRIV)
+       $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_p256_m62$O src$Pec$Pec_p256_m62.c
+
+$(OBJDIR)$Pec_p256_m64$O: src$Pec$Pec_p256_m64.c $(HEADERSPRIV)
+       $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_p256_m64$O src$Pec$Pec_p256_m64.c
+
 $(OBJDIR)$Pec_prime_i15$O: src$Pec$Pec_prime_i15.c $(HEADERSPRIV)
        $(CC) $(CFLAGS) $(INCFLAGS) $(CCOUT)$(OBJDIR)$Pec_prime_i15$O src$Pec$Pec_prime_i15.c
 
index 05a8b6b..297a5d5 100755 (executable)
@@ -75,11 +75,14 @@ coresrc=" \
        src/ec/ec_c25519_m15.c \
        src/ec/ec_c25519_m31.c \
        src/ec/ec_c25519_m62.c \
+       src/ec/ec_c25519_m64.c \
        src/ec/ec_curve25519.c \
        src/ec/ec_default.c \
        src/ec/ec_keygen.c \
        src/ec/ec_p256_m15.c \
        src/ec/ec_p256_m31.c \
+       src/ec/ec_p256_m62.c \
+       src/ec/ec_p256_m64.c \
        src/ec/ec_prime_i15.c \
        src/ec/ec_prime_i31.c \
        src/ec/ec_pubkey.c \
index 44eb455..6b058eb 100644 (file)
 
 #if BR_INT128 || BR_UMUL128
 
+#if BR_UMUL128
+#include <intrin.h>
+#endif
+
 static const unsigned char GEN[] = {
        0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
diff --git a/src/ec/ec_c25519_m64.c b/src/ec/ec_c25519_m64.c
new file mode 100644 (file)
index 0000000..7e7f12f
--- /dev/null
@@ -0,0 +1,835 @@
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining 
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be 
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+#if BR_INT128 || BR_UMUL128
+
+#if BR_UMUL128
+#include <intrin.h>
+#endif
+
+static const unsigned char GEN[] = {
+       0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
+       0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
+};
+
+static const unsigned char ORDER[] = {
+       0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+       0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+       0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
+       0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
+};
+
+static const unsigned char *
+api_generator(int curve, size_t *len)
+{
+       (void)curve;
+       *len = 32;
+       return GEN;
+}
+
+static const unsigned char *
+api_order(int curve, size_t *len)
+{
+       (void)curve;
+       *len = 32;
+       return ORDER;
+}
+
+static size_t
+api_xoff(int curve, size_t *len)
+{
+       (void)curve;
+       *len = 32;
+       return 0;
+}
+
+/*
+ * A field element is encoded as four 64-bit integers, in basis 2^63.
+ * Operations return partially reduced values, which may range up to
+ * 2^255+37.
+ */
+
+#define MASK63   (((uint64_t)1 << 63) - (uint64_t)1)
+
+/*
+ * Swap two field elements, conditionally on a flag.
+ */
+static inline void
+f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
+{
+       uint64_t m, w;
+
+       m = -(uint64_t)ctl;
+       w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
+       w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
+       w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
+       w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
+}
+
+/*
+ * Addition in the field.
+ */
+static inline void
+f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+#if BR_INT128
+
+       uint64_t t0, t1, t2, t3, cc;
+       unsigned __int128 z;
+
+       z = (unsigned __int128)a[0] + (unsigned __int128)b[0];
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)a[1] + (unsigned __int128)b[1] + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)a[2] + (unsigned __int128)b[2] + (z >> 64);
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)a[3] + (unsigned __int128)b[3] + (z >> 64);
+       t3 = (uint64_t)z & MASK63;
+       cc = (uint64_t)(z >> 63);
+
+       /*
+        * Since operands are at most 2^255+37, the sum is at most
+        * 2^256+74; thus, the carry cc is equal to 0, 1 or 2.
+        *
+        * We use: 2^255 = 19 mod p.
+        * Since we add 0, 19 or 38 to a value that fits on 255 bits,
+        * the result is at most 2^255+37.
+        */
+       z = (unsigned __int128)t0 + (unsigned __int128)(19 * cc);
+       d[0] = (uint64_t)z;
+       z = (unsigned __int128)t1 + (z >> 64);
+       d[1] = (uint64_t)z;
+       z = (unsigned __int128)t2 + (z >> 64);
+       d[2] = (uint64_t)z;
+       d[3] = t3 + (uint64_t)(z >> 64);
+
+#elif BR_UMUL128
+
+       uint64_t t0, t1, t2, t3, cc;
+       unsigned char k;
+
+       k = _addcarry_u64(0, a[0], b[0], &t0);
+       k = _addcarry_u64(k, a[1], b[1], &t1);
+       k = _addcarry_u64(k, a[2], b[2], &t2);
+       k = _addcarry_u64(k, a[3], b[3], &t3);
+       cc = (k << 1) + (t3 >> 63);
+       t3 &= MASK63;
+
+       /*
+        * Since operands are at most 2^255+37, the sum is at most
+        * 2^256+74; thus, the carry cc is equal to 0, 1 or 2.
+        *
+        * We use: 2^255 = 19 mod p.
+        * Since we add 0, 19 or 38 to a value that fits on 255 bits,
+        * the result is at most 2^255+37.
+        */
+       k = _addcarry_u64(0, t0, 19 * cc, &d[0]);
+       k = _addcarry_u64(k, t1, 0, &d[1]);
+       k = _addcarry_u64(k, t2, 0, &d[2]);
+       (void)_addcarry_u64(k, t3, 0, &d[3]);
+
+#endif
+}
+
+/*
+ * Subtraction.
+ * On input, limbs must fit on 60 bits each. On output, result is
+ * partially reduced, with max value 2^255+19456; moreover, all
+ * limbs will fit on 51 bits, except the low limb, which may have
+ * value up to 2^51+19455.
+ */
+static inline void
+f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+#if BR_INT128
+
+       /*
+        * We compute t = 2^256 - 38 + a - b, which is necessarily
+        * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37
+        * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending
+        * on the two upper bits of t (bits 255 and 256).
+        */
+
+       uint64_t t0, t1, t2, t3, t4, cc;
+       unsigned __int128 z;
+
+       z = (unsigned __int128)a[0] - (unsigned __int128)b[0] - 38;
+       t0 = (uint64_t)z;
+       cc = -(uint64_t)(z >> 64);
+       z = (unsigned __int128)a[1] - (unsigned __int128)b[1]
+               - (unsigned __int128)cc;
+       t1 = (uint64_t)z;
+       cc = -(uint64_t)(z >> 64);
+       z = (unsigned __int128)a[2] - (unsigned __int128)b[2]
+               - (unsigned __int128)cc;
+       t2 = (uint64_t)z;
+       cc = -(uint64_t)(z >> 64);
+       z = (unsigned __int128)a[3] - (unsigned __int128)b[3]
+               - (unsigned __int128)cc;
+       t3 = (uint64_t)z;
+       t4 = 1 + (uint64_t)(z >> 64);
+
+       /*
+        * We have a 257-bit result. The two top bits can be 00, 01 or 10,
+        * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1).
+        * Therefore, we can truncate to 255 bits, and add 0, 19 or 38.
+        * This guarantees that the result is at most 2^255+37.
+        */
+       cc = (38 & -t4) + (19 & -(t3 >> 63));
+       t3 &= MASK63;
+       z = (unsigned __int128)t0 + (unsigned __int128)cc;
+       d[0] = (uint64_t)z;
+       z = (unsigned __int128)t1 + (z >> 64);
+       d[1] = (uint64_t)z;
+       z = (unsigned __int128)t2 + (z >> 64);
+       d[2] = (uint64_t)z;
+       d[3] = t3 + (uint64_t)(z >> 64);
+
+#elif BR_UMUL128
+
+       /*
+        * We compute t = 2^256 - 38 + a - b, which is necessarily
+        * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37
+        * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending
+        * on the two upper bits of t (bits 255 and 256).
+        */
+
+       uint64_t t0, t1, t2, t3, t4;
+       unsigned char k;
+
+       k = _subborrow_u64(0, a[0], b[0], &t0);
+       k = _subborrow_u64(k, a[1], b[1], &t1);
+       k = _subborrow_u64(k, a[2], b[2], &t2);
+       k = _subborrow_u64(k, a[3], b[3], &t3);
+       (void)_subborrow_u64(k, 1, 0, &t4);
+
+       k = _subborrow_u64(0, t0, 38, &t0);
+       k = _subborrow_u64(k, t1, 0, &t1);
+       k = _subborrow_u64(k, t2, 0, &t2);
+       k = _subborrow_u64(k, t3, 0, &t3);
+       (void)_subborrow_u64(k, t4, 0, &t4);
+
+       /*
+        * We have a 257-bit result. The two top bits can be 00, 01 or 10,
+        * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1).
+        * Therefore, we can truncate to 255 bits, and add 0, 19 or 38.
+        * This guarantees that the result is at most 2^255+37.
+        */
+       t4 = (38 & -t4) + (19 & -(t3 >> 63));
+       t3 &= MASK63;
+       k = _addcarry_u64(0, t0, t4, &d[0]);
+       k = _addcarry_u64(k, t1, 0, &d[1]);
+       k = _addcarry_u64(k, t2, 0, &d[2]);
+       (void)_addcarry_u64(k, t3, 0, &d[3]);
+
+#endif
+}
+
+/*
+ * Multiplication.
+ */
+static inline void
+f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
+{
+#if BR_INT128
+
+       unsigned __int128 z;
+       uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th;
+
+       /*
+        * Compute the product a*b over plain integers.
+        */
+       z = (unsigned __int128)a[0] * (unsigned __int128)b[0];
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)a[0] * (unsigned __int128)b[1] + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)a[0] * (unsigned __int128)b[2] + (z >> 64);
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)a[0] * (unsigned __int128)b[3] + (z >> 64);
+       t3 = (uint64_t)z;
+       t4 = (uint64_t)(z >> 64);
+
+       z = (unsigned __int128)a[1] * (unsigned __int128)b[0]
+               + (unsigned __int128)t1;
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)a[1] * (unsigned __int128)b[1]
+               + (unsigned __int128)t2 + (z >> 64);
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)a[1] * (unsigned __int128)b[2]
+               + (unsigned __int128)t3 + (z >> 64);
+       t3 = (uint64_t)z;
+       z = (unsigned __int128)a[1] * (unsigned __int128)b[3]
+               + (unsigned __int128)t4 + (z >> 64);
+       t4 = (uint64_t)z;
+       t5 = (uint64_t)(z >> 64);
+
+       z = (unsigned __int128)a[2] * (unsigned __int128)b[0]
+               + (unsigned __int128)t2;
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)a[2] * (unsigned __int128)b[1]
+               + (unsigned __int128)t3 + (z >> 64);
+       t3 = (uint64_t)z;
+       z = (unsigned __int128)a[2] * (unsigned __int128)b[2]
+               + (unsigned __int128)t4 + (z >> 64);
+       t4 = (uint64_t)z;
+       z = (unsigned __int128)a[2] * (unsigned __int128)b[3]
+               + (unsigned __int128)t5 + (z >> 64);
+       t5 = (uint64_t)z;
+       t6 = (uint64_t)(z >> 64);
+
+       z = (unsigned __int128)a[3] * (unsigned __int128)b[0]
+               + (unsigned __int128)t3;
+       t3 = (uint64_t)z;
+       z = (unsigned __int128)a[3] * (unsigned __int128)b[1]
+               + (unsigned __int128)t4 + (z >> 64);
+       t4 = (uint64_t)z;
+       z = (unsigned __int128)a[3] * (unsigned __int128)b[2]
+               + (unsigned __int128)t5 + (z >> 64);
+       t5 = (uint64_t)z;
+       z = (unsigned __int128)a[3] * (unsigned __int128)b[3]
+               + (unsigned __int128)t6 + (z >> 64);
+       t6 = (uint64_t)z;
+       t7 = (uint64_t)(z >> 64);
+
+       /*
+        * Modulo p, we have:
+        *
+        *   2^255 = 19
+        *   2^510 = 19*19 = 361
+        *
+        * We split the intermediate t into three parts, in basis
+        * 2^255. The low one will be in t0..t3; the middle one in t4..t7.
+        * The upper one can only be a single bit (th), since the
+        * multiplication operands are at most 2^255+37 each.
+        */
+       th = t7 >> 62;
+       t7 = ((t7 << 1) | (t6 >> 63)) & MASK63;
+       t6 = (t6 << 1) | (t5 >> 63);
+       t5 = (t5 << 1) | (t4 >> 63);
+       t4 = (t4 << 1) | (t3 >> 63);
+       t3 &= MASK63;
+
+       /*
+        * Multiply the middle part (t4..t7) by 19. We truncate it to
+        * 255 bits; the extra bits will go along with th.
+        */
+       z = (unsigned __int128)t4 * 19;
+       t4 = (uint64_t)z;
+       z = (unsigned __int128)t5 * 19 + (z >> 64);
+       t5 = (uint64_t)z;
+       z = (unsigned __int128)t6 * 19 + (z >> 64);
+       t6 = (uint64_t)z;
+       z = (unsigned __int128)t7 * 19 + (z >> 64);
+       t7 = (uint64_t)z & MASK63;
+
+       th = (361 & -th) + (19 * (uint64_t)(z >> 63));
+
+       /*
+        * Add elements together.
+        * At this point:
+        *   t0..t3 fits on 255 bits.
+        *   t4..t7 fits on 255 bits.
+        *   th <= 361 + 342 = 703.
+        */
+       z = (unsigned __int128)t0 + (unsigned __int128)t4
+               + (unsigned __int128)th;
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)t1 + (unsigned __int128)t5 + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)t2 + (unsigned __int128)t6 + (z >> 64);
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)t3 + (unsigned __int128)t7 + (z >> 64);
+       t3 = (uint64_t)z & MASK63;
+       th = (uint64_t)(z >> 63);
+
+       /*
+        * Since the sum is at most 2^256 + 703, the two upper bits, in th,
+        * can only have value 0, 1 or 2. We just add th*19, which
+        * guarantees a result of at most 2^255+37.
+        */
+       z = (unsigned __int128)t0 + (19 * th);
+       d[0] = (uint64_t)z;
+       z = (unsigned __int128)t1 + (z >> 64);
+       d[1] = (uint64_t)z;
+       z = (unsigned __int128)t2 + (z >> 64);
+       d[2] = (uint64_t)z;
+       d[3] = t3 + (uint64_t)(z >> 64);
+
+#elif BR_UMUL128
+
+       uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th;
+       uint64_t h0, h1, h2, h3;
+       unsigned char k;
+
+       /*
+        * Compute the product a*b over plain integers.
+        */
+       t0 = _umul128(a[0], b[0], &h0);
+       t1 = _umul128(a[0], b[1], &h1);
+       k = _addcarry_u64(0, t1, h0, &t1);
+       t2 = _umul128(a[0], b[2], &h2);
+       k = _addcarry_u64(k, t2, h1, &t2);
+       t3 = _umul128(a[0], b[3], &h3);
+       k = _addcarry_u64(k, t3, h2, &t3);
+       (void)_addcarry_u64(k, h3, 0, &t4);
+
+       k = _addcarry_u64(0, _umul128(a[1], b[0], &h0), t1, &t1);
+       k = _addcarry_u64(k, _umul128(a[1], b[1], &h1), t2, &t2);
+       k = _addcarry_u64(k, _umul128(a[1], b[2], &h2), t3, &t3);
+       k = _addcarry_u64(k, _umul128(a[1], b[3], &h3), t4, &t4);
+       t5 = k;
+       k = _addcarry_u64(0, t2, h0, &t2);
+       k = _addcarry_u64(k, t3, h1, &t3);
+       k = _addcarry_u64(k, t4, h2, &t4);
+       (void)_addcarry_u64(k, t5, h3, &t5);
+
+       k = _addcarry_u64(0, _umul128(a[2], b[0], &h0), t2, &t2);
+       k = _addcarry_u64(k, _umul128(a[2], b[1], &h1), t3, &t3);
+       k = _addcarry_u64(k, _umul128(a[2], b[2], &h2), t4, &t4);
+       k = _addcarry_u64(k, _umul128(a[2], b[3], &h3), t5, &t5);
+       t6 = k;
+       k = _addcarry_u64(0, t3, h0, &t3);
+       k = _addcarry_u64(k, t4, h1, &t4);
+       k = _addcarry_u64(k, t5, h2, &t5);
+       (void)_addcarry_u64(k, t6, h3, &t6);
+
+       k = _addcarry_u64(0, _umul128(a[3], b[0], &h0), t3, &t3);
+       k = _addcarry_u64(k, _umul128(a[3], b[1], &h1), t4, &t4);
+       k = _addcarry_u64(k, _umul128(a[3], b[2], &h2), t5, &t5);
+       k = _addcarry_u64(k, _umul128(a[3], b[3], &h3), t6, &t6);
+       t7 = k;
+       k = _addcarry_u64(0, t4, h0, &t4);
+       k = _addcarry_u64(k, t5, h1, &t5);
+       k = _addcarry_u64(k, t6, h2, &t6);
+       (void)_addcarry_u64(k, t7, h3, &t7);
+
+       /*
+        * Modulo p, we have:
+        *
+        *   2^255 = 19
+        *   2^510 = 19*19 = 361
+        *
+        * We split the intermediate t into three parts, in basis
+        * 2^255. The low one will be in t0..t3; the middle one in t4..t7.
+        * The upper one can only be a single bit (th), since the
+        * multiplication operands are at most 2^255+37 each.
+        */
+       th = t7 >> 62;
+       t7 = ((t7 << 1) | (t6 >> 63)) & MASK63;
+       t6 = (t6 << 1) | (t5 >> 63);
+       t5 = (t5 << 1) | (t4 >> 63);
+       t4 = (t4 << 1) | (t3 >> 63);
+       t3 &= MASK63;
+
+       /*
+        * Multiply the middle part (t4..t7) by 19. We truncate it to
+        * 255 bits; the extra bits will go along with th.
+        */
+       t4 = _umul128(t4, 19, &h0);
+       t5 = _umul128(t5, 19, &h1);
+       t6 = _umul128(t6, 19, &h2);
+       t7 = _umul128(t7, 19, &h3);
+       k = _addcarry_u64(0, t5, h0, &t5);
+       k = _addcarry_u64(k, t6, h1, &t6);
+       k = _addcarry_u64(k, t7, h2, &t7);
+       (void)_addcarry_u64(k, h3, 0, &h3);
+       th = (361 & -th) + (19 * ((h3 << 1) + (t7 >> 63)));
+       t7 &= MASK63;
+
+       /*
+        * Add elements together.
+        * At this point:
+        *   t0..t3 fits on 255 bits.
+        *   t4..t7 fits on 255 bits.
+        *   th <= 361 + 342 = 703.
+        */
+       k = _addcarry_u64(0, t0, t4, &t0);
+       k = _addcarry_u64(k, t1, t5, &t1);
+       k = _addcarry_u64(k, t2, t6, &t2);
+       k = _addcarry_u64(k, t3, t7, &t3);
+       t4 = k;
+       k = _addcarry_u64(0, t0, th, &t0);
+       k = _addcarry_u64(k, t1, 0, &t1);
+       k = _addcarry_u64(k, t2, 0, &t2);
+       k = _addcarry_u64(k, t3, 0, &t3);
+       (void)_addcarry_u64(k, t4, 0, &t4);
+
+       th = (t4 << 1) + (t3 >> 63);
+       t3 &= MASK63;
+
+       /*
+        * Since the sum is at most 2^256 + 703, the two upper bits, in th,
+        * can only have value 0, 1 or 2. We just add th*19, which
+        * guarantees a result of at most 2^255+37.
+        */
+       k = _addcarry_u64(0, t0, 19 * th, &d[0]);
+       k = _addcarry_u64(k, t1, 0, &d[1]);
+       k = _addcarry_u64(k, t2, 0, &d[2]);
+       (void)_addcarry_u64(k, t3, 0, &d[3]);
+
+#endif
+}
+
+/*
+ * Multiplication by A24 = 121665.
+ */
+static inline void
+f255_mul_a24(uint64_t *d, const uint64_t *a)
+{
+#if BR_INT128
+
+       uint64_t t0, t1, t2, t3;
+       unsigned __int128 z;
+
+       z = (unsigned __int128)a[0] * 121665;
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)a[1] * 121665 + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)a[2] * 121665 + (z >> 64);
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)a[3] * 121665 + (z >> 64);
+       t3 = (uint64_t)z & MASK63;
+
+       z = (unsigned __int128)t0 + (19 * (uint64_t)(z >> 63));
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)t1 + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)t2 + (z >> 64);
+       t2 = (uint64_t)z;
+       t3 = t3 + (uint64_t)(z >> 64);
+
+       z = (unsigned __int128)t0 + (19 & -(t3 >> 63));
+       d[0] = (uint64_t)z;
+       z = (unsigned __int128)t1 + (z >> 64);
+       d[1] = (uint64_t)z;
+       z = (unsigned __int128)t2 + (z >> 64);
+       d[2] = (uint64_t)z;
+       d[3] = (t3 & MASK63) + (uint64_t)(z >> 64);
+
+#elif BR_UMUL128
+
+       uint64_t t0, t1, t2, t3, t4, h0, h1, h2, h3;
+       unsigned char k;
+
+       t0 = _umul128(a[0], 121665, &h0);
+       t1 = _umul128(a[1], 121665, &h1);
+       k = _addcarry_u64(0, t1, h0, &t1);
+       t2 = _umul128(a[2], 121665, &h2);
+       k = _addcarry_u64(k, t2, h1, &t2);
+       t3 = _umul128(a[3], 121665, &h3);
+       k = _addcarry_u64(k, t3, h2, &t3);
+       (void)_addcarry_u64(k, h3, 0, &t4);
+
+       t4 = (t4 << 1) + (t3 >> 63);
+       t3 &= MASK63;
+       k = _addcarry_u64(0, t0, 19 * t4, &t0);
+       k = _addcarry_u64(k, t1, 0, &t1);
+       k = _addcarry_u64(k, t2, 0, &t2);
+       (void)_addcarry_u64(k, t3, 0, &t3);
+
+       t4 = 19 & -(t3 >> 63);
+       t3 &= MASK63;
+       k = _addcarry_u64(0, t0, t4, &d[0]);
+       k = _addcarry_u64(k, t1, 0, &d[1]);
+       k = _addcarry_u64(k, t2, 0, &d[2]);
+       (void)_addcarry_u64(k, t3, 0, &d[3]);
+
+#endif
+}
+
+/*
+ * Finalize reduction.
+ */
+static inline void
+f255_final_reduce(uint64_t *a)
+{
+#if BR_INT128
+
+       uint64_t t0, t1, t2, t3, m;
+       unsigned __int128 z;
+
+       /*
+        * We add 19. If the result (in t) is below 2^255, then a[]
+        * is already less than 2^255-19, thus already reduced.
+        * Otherwise, we subtract 2^255 from t[], in which case we
+        * have t = a - (2^255-19), and that's our result.
+        */
+       z = (unsigned __int128)a[0] + 19;
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)a[1] + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)a[2] + (z >> 64);
+       t2 = (uint64_t)z;
+       t3 = a[3] + (uint64_t)(z >> 64);
+
+       m = -(t3 >> 63);
+       t3 &= MASK63;
+       a[0] ^= m & (a[0] ^ t0);
+       a[1] ^= m & (a[1] ^ t1);
+       a[2] ^= m & (a[2] ^ t2);
+       a[3] ^= m & (a[3] ^ t3);
+
+#elif BR_UMUL128
+
+       uint64_t t0, t1, t2, t3, m;
+       unsigned char k;
+
+       /*
+        * We add 19. If the result (in t) is below 2^255, then a[]
+        * is already less than 2^255-19, thus already reduced.
+        * Otherwise, we subtract 2^255 from t[], in which case we
+        * have t = a - (2^255-19), and that's our result.
+        */
+       k = _addcarry_u64(0, a[0], 19, &t0);
+       k = _addcarry_u64(k, a[1], 0, &t1);
+       k = _addcarry_u64(k, a[2], 0, &t2);
+       (void)_addcarry_u64(k, a[3], 0, &t3);
+
+       m = -(t3 >> 63);
+       t3 &= MASK63;
+       a[0] ^= m & (a[0] ^ t0);
+       a[1] ^= m & (a[1] ^ t1);
+       a[2] ^= m & (a[2] ^ t2);
+       a[3] ^= m & (a[3] ^ t3);
+
+#endif
+}
+
+static uint32_t
+api_mul(unsigned char *G, size_t Glen,
+       const unsigned char *kb, size_t kblen, int curve)
+{
+       unsigned char k[32];
+       uint64_t x1[4], x2[4], z2[4], x3[4], z3[4];
+       uint32_t swap;
+       int i;
+
+       (void)curve;
+
+       /*
+        * Points are encoded over exactly 32 bytes. Multipliers must fit
+        * in 32 bytes as well.
+        */
+       if (Glen != 32 || kblen > 32) {
+               return 0;
+       }
+
+       /*
+        * RFC 7748 mandates that the high bit of the last point byte must
+        * be ignored/cleared.
+        */
+       x1[0] = br_dec64le(&G[ 0]);
+       x1[1] = br_dec64le(&G[ 8]);
+       x1[2] = br_dec64le(&G[16]);
+       x1[3] = br_dec64le(&G[24]) & MASK63;
+
+       /*
+        * We can use memset() to clear values, because exact-width types
+        * like uint64_t are guaranteed to have no padding bits or
+        * trap representations.
+        */
+       memset(x2, 0, sizeof x2);
+       x2[0] = 1;
+       memset(z2, 0, sizeof z2);
+       memcpy(x3, x1, sizeof x1);
+       memcpy(z3, x2, sizeof x2);
+
+       /*
+        * The multiplier is provided in big-endian notation, and
+        * possibly shorter than 32 bytes.
+        */
+       memset(k, 0, (sizeof k) - kblen);
+       memcpy(k + (sizeof k) - kblen, kb, kblen);
+       k[31] &= 0xF8;
+       k[0] &= 0x7F;
+       k[0] |= 0x40;
+
+       swap = 0;
+
+       for (i = 254; i >= 0; i --) {
+               uint64_t a[4], aa[4], b[4], bb[4], e[4];
+               uint64_t c[4], d[4], da[4], cb[4];
+               uint32_t kt;
+
+               kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
+               swap ^= kt;
+               f255_cswap(x2, x3, swap);
+               f255_cswap(z2, z3, swap);
+               swap = kt;
+
+               /* A = x_2 + z_2 */
+               f255_add(a, x2, z2);
+
+               /* AA = A^2 */
+               f255_mul(aa, a, a);
+
+               /* B = x_2 - z_2 */
+               f255_sub(b, x2, z2);
+
+               /* BB = B^2 */
+               f255_mul(bb, b, b);
+
+               /* E = AA - BB */
+               f255_sub(e, aa, bb);
+
+               /* C = x_3 + z_3 */
+               f255_add(c, x3, z3);
+
+               /* D = x_3 - z_3 */
+               f255_sub(d, x3, z3);
+
+               /* DA = D * A */
+               f255_mul(da, d, a);
+
+               /* CB = C * B */
+               f255_mul(cb, c, b);
+
+               /* x_3 = (DA + CB)^2 */
+               f255_add(x3, da, cb);
+               f255_mul(x3, x3, x3);
+
+               /* z_3 = x_1 * (DA - CB)^2 */
+               f255_sub(z3, da, cb);
+               f255_mul(z3, z3, z3);
+               f255_mul(z3, x1, z3);
+
+               /* x_2 = AA * BB */
+               f255_mul(x2, aa, bb);
+
+               /* z_2 = E * (AA + a24 * E) */
+               f255_mul_a24(z2, e);
+               f255_add(z2, aa, z2);
+               f255_mul(z2, e, z2);
+       }
+
+       f255_cswap(x2, x3, swap);
+       f255_cswap(z2, z3, swap);
+
+       /*
+        * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
+        * most non-squarings. We use x1 and x3, now useless, as temporaries.
+        */
+       memcpy(x1, z2, sizeof z2);
+       for (i = 0; i < 15; i ++) {
+               f255_mul(x1, x1, x1);
+               f255_mul(x1, x1, z2);
+       }
+       memcpy(x3, x1, sizeof x1);
+       for (i = 0; i < 14; i ++) {
+               int j;
+
+               for (j = 0; j < 16; j ++) {
+                       f255_mul(x3, x3, x3);
+               }
+               f255_mul(x3, x3, x1);
+       }
+       for (i = 14; i >= 0; i --) {
+               f255_mul(x3, x3, x3);
+               if ((0xFFEB >> i) & 1) {
+                       f255_mul(x3, z2, x3);
+               }
+       }
+
+       /*
+        * Compute x2/z2. We have 1/z2 in x3.
+        */
+       f255_mul(x2, x2, x3);
+       f255_final_reduce(x2);
+
+       /*
+        * Encode the final x2 value in little-endian.
+        */
+       br_enc64le(G,      x2[0]);
+       br_enc64le(G +  8, x2[1]);
+       br_enc64le(G + 16, x2[2]);
+       br_enc64le(G + 24, x2[3]);
+       return 1;
+}
+
+static size_t
+api_mulgen(unsigned char *R,
+       const unsigned char *x, size_t xlen, int curve)
+{
+       const unsigned char *G;
+       size_t Glen;
+
+       G = api_generator(curve, &Glen);
+       memcpy(R, G, Glen);
+       api_mul(R, Glen, x, xlen, curve);
+       return Glen;
+}
+
+static uint32_t
+api_muladd(unsigned char *A, const unsigned char *B, size_t len,
+       const unsigned char *x, size_t xlen,
+       const unsigned char *y, size_t ylen, int curve)
+{
+       /*
+        * We don't implement this method, since it is used for ECDSA
+        * only, and there is no ECDSA over Curve25519 (which instead
+        * uses EdDSA).
+        */
+       (void)A;
+       (void)B;
+       (void)len;
+       (void)x;
+       (void)xlen;
+       (void)y;
+       (void)ylen;
+       (void)curve;
+       return 0;
+}
+
+/* see bearssl_ec.h */
+const br_ec_impl br_ec_c25519_m64 = {
+       (uint32_t)0x20000000,
+       &api_generator,
+       &api_order,
+       &api_xoff,
+       &api_mul,
+       &api_mulgen,
+       &api_muladd
+};
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_c25519_m64_get(void)
+{
+       return &br_ec_c25519_m64;
+}
+
+#else
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_c25519_m64_get(void)
+{
+       return 0;
+}
+
+#endif
diff --git a/src/ec/ec_p256_m62.c b/src/ec/ec_p256_m62.c
new file mode 100644 (file)
index 0000000..3bcb95b
--- /dev/null
@@ -0,0 +1,1765 @@
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining 
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be 
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+#if BR_INT128 || BR_UMUL128
+
+#if BR_UMUL128
+#include <intrin.h>
+#endif
+
+static const unsigned char P256_G[] = {
+       0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
+       0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
+       0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
+       0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
+       0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
+       0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
+       0x68, 0x37, 0xBF, 0x51, 0xF5
+};
+
+static const unsigned char P256_N[] = {
+       0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
+       0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
+       0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
+       0x25, 0x51
+};
+
+static const unsigned char *
+api_generator(int curve, size_t *len)
+{
+       (void)curve;
+       *len = sizeof P256_G;
+       return P256_G;
+}
+
+static const unsigned char *
+api_order(int curve, size_t *len)
+{
+       (void)curve;
+       *len = sizeof P256_N;
+       return P256_N;
+}
+
+static size_t
+api_xoff(int curve, size_t *len)
+{
+       (void)curve;
+       *len = 32;
+       return 1;
+}
+
+/*
+ * A field element is encoded as five 64-bit integers, in basis 2^52.
+ * Limbs may occasionally exceed 2^52.
+ *
+ * A _partially reduced_ value is such that the following hold:
+ *   - top limb is less than 2^48 + 2^30
+ *   - the other limbs fit on 53 bits each
+ * In particular, such a value is less than twice the modulus p.
+ */
+
+#define BIT(n)   ((uint64_t)1 << (n))
+#define MASK48   (BIT(48) - BIT(0))
+#define MASK52   (BIT(52) - BIT(0))
+
+/* R = 2^260 mod p */
+static const uint64_t F256_R[] = {
+       0x0000000000010, 0xF000000000000, 0xFFFFFFFFFFFFF,
+       0xFFEFFFFFFFFFF, 0x00000000FFFFF
+};
+
+/* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
+   (Montgomery representation of B). */
+static const uint64_t P256_B_MONTY[] = {
+       0xDF6229C4BDDFD, 0xCA8843090D89C, 0x212ED6ACF005C,
+       0x83415A220ABF7, 0x0C30061DD4874
+};
+
+/*
+ * Addition in the field. Carry propagation is not performed.
+ * On input, limbs may be up to 63 bits each; on output, they will
+ * be up to one bit more than on input.
+ */
+static inline void
+f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+       d[0] = a[0] + b[0];
+       d[1] = a[1] + b[1];
+       d[2] = a[2] + b[2];
+       d[3] = a[3] + b[3];
+       d[4] = a[4] + b[4];
+}
+
+/*
+ * Partially reduce the provided value.
+ * Input: limbs can go up to 61 bits each.
+ * Output: partially reduced.
+ */
+static inline void
+f256_partial_reduce(uint64_t *a)
+{
+       uint64_t w, cc, s;
+
+       /*
+        * Propagate carries.
+        */
+       w = a[0];
+       a[0] = w & MASK52;
+       cc = w >> 52;
+       w = a[1] + cc;
+       a[1] = w & MASK52;
+       cc = w >> 52;
+       w = a[2] + cc;
+       a[2] = w & MASK52;
+       cc = w >> 52;
+       w = a[3] + cc;
+       a[3] = w & MASK52;
+       cc = w >> 52;
+       a[4] += cc;
+
+       s = a[4] >> 48;             /* s < 2^14 */
+       a[0] += s;                  /* a[0] < 2^52 + 2^14 */
+       w = a[1] - (s << 44);
+       a[1] = w & MASK52;          /* a[1] < 2^52 */
+       cc = -(w >> 52) & 0xFFF;    /* cc < 16 */
+       w = a[2] - cc;
+       a[2] = w & MASK52;          /* a[2] < 2^52 */
+       cc = w >> 63;               /* cc = 0 or 1 */
+       w = a[3] - cc - (s << 36);
+       a[3] = w & MASK52;          /* a[3] < 2^52 */
+       cc = w >> 63;               /* cc = 0 or 1 */
+       w = a[4] & MASK48;
+       a[4] = w + (s << 16) - cc;  /* a[4] < 2^48 + 2^30 */
+}
+
+/*
+ * Subtraction in the field.
+ * Input: limbs must fit on 60 bits each; in particular, the complete
+ * integer will be less than 2^268 + 2^217.
+ * Output: partially reduced.
+ */
+static inline void
+f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+       uint64_t t[5], w, s, cc;
+
+       /*
+        * We compute d = 2^13*p + a - b; this ensures a positive
+        * intermediate value.
+        *
+        * Each individual addition/subtraction may yield a positive or
+        * negative result; thus, we need to handle a signed carry, thus
+        * with sign extension. We prefer not to use signed types (int64_t)
+        * because conversion from unsigned to signed is cumbersome (a
+        * direct cast with the top bit set is undefined behavior; instead,
+        * we have to use pointer aliasing, using the guaranteed properties
+        * of exact-width types, but this requires the compiler to optimize
+        * away the writes and reads from RAM), and right-shifting a
+        * signed negative value is implementation-defined. Therefore,
+        * we use a custom sign extension.
+        */
+
+       w = a[0] - b[0] - BIT(13);
+       t[0] = w & MASK52;
+       cc = w >> 52;
+       cc |= -(cc & BIT(11));
+       w = a[1] - b[1] + cc;
+       t[1] = w & MASK52;
+       cc = w >> 52;
+       cc |= -(cc & BIT(11));
+       w = a[2] - b[2] + cc;
+       t[2] = (w & MASK52) + BIT(5);
+       cc = w >> 52;
+       cc |= -(cc & BIT(11));
+       w = a[3] - b[3] + cc;
+       t[3] = (w & MASK52) + BIT(49);
+       cc = w >> 52;
+       cc |= -(cc & BIT(11));
+       t[4] = (BIT(61) - BIT(29)) + a[4] - b[4] + cc;
+
+       /*
+        * Perform partial reduction. Rule is:
+        *  2^256 = 2^224 - 2^192 - 2^96 + 1 mod p
+        *
+        * At that point:
+        *    0 <= t[0] <= 2^52 - 1
+        *    0 <= t[1] <= 2^52 - 1
+        *    2^5 <= t[2] <= 2^52 + 2^5 - 1
+        *    2^49 <= t[3] <= 2^52 + 2^49 - 1
+        *    2^59 < t[4] <= 2^61 + 2^60 - 2^29
+        *
+        * Thus, the value 's' (t[4] / 2^48) will be necessarily
+        * greater than 2048, and less than 12288.
+        */
+       s = t[4] >> 48;
+
+       d[0] = t[0] + s;             /* d[0] <= 2^52 + 12287 */
+       w = t[1] - (s << 44);
+       d[1] = w & MASK52;           /* d[1] <= 2^52 - 1 */
+       cc = -(w >> 52) & 0xFFF;     /* cc <= 48 */
+       w = t[2] - cc;
+       cc = w >> 63;                /* cc = 0 or 1 */
+       d[2] = w + (cc << 52);       /* d[2] <= 2^52 + 31 */
+       w = t[3] - cc - (s << 36);
+       cc = w >> 63;                /* cc = 0 or 1 */
+       d[3] = w + (cc << 52);       /* t[3] <= 2^52 + 2^49 - 1 */
+       d[4] = (t[4] & MASK48) + (s << 16) - cc;  /* d[4] < 2^48 + 2^30 */
+
+       /*
+        * If s = 0, then none of the limbs is modified, and there cannot
+        * be an overflow; if s != 0, then (s << 16) > cc, and there is
+        * no overflow either.
+        */
+}
+
+/*
+ * Montgomery multiplication in the field.
+ * Input: limbs must fit on 56 bits each.
+ * Output: partially reduced.
+ */
+static void
+f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+#if BR_INT128
+
+       int i;
+       uint64_t t[5];
+
+       t[0] = 0;
+       t[1] = 0;
+       t[2] = 0;
+       t[3] = 0;
+       t[4] = 0;
+       for (i = 0; i < 5; i ++) {
+               uint64_t x, f, cc, w, s;
+               unsigned __int128 z;
+
+               /*
+                * Since limbs of a[] and b[] fit on 56 bits each,
+                * each individual product fits on 112 bits. Also,
+                * the factor f fits on 52 bits, so f<<48 fits on
+                * 112 bits too. This guarantees that carries (cc)
+                * will fit on 62 bits, thus no overflow.
+                *
+                * The operations below compute:
+                *   t <- (t + x*b + f*p) / 2^64
+                */
+               x = a[i];
+               z = (unsigned __int128)b[0] * (unsigned __int128)x
+                       + (unsigned __int128)t[0];
+               f = (uint64_t)z & MASK52;
+               cc = (uint64_t)(z >> 52);
+               z = (unsigned __int128)b[1] * (unsigned __int128)x
+                       + (unsigned __int128)t[1] + cc
+                       + ((unsigned __int128)f << 44);
+               t[0] = (uint64_t)z & MASK52;
+               cc = (uint64_t)(z >> 52);
+               z = (unsigned __int128)b[2] * (unsigned __int128)x
+                       + (unsigned __int128)t[2] + cc;
+               t[1] = (uint64_t)z & MASK52;
+               cc = (uint64_t)(z >> 52);
+               z = (unsigned __int128)b[3] * (unsigned __int128)x
+                       + (unsigned __int128)t[3] + cc
+                       + ((unsigned __int128)f << 36);
+               t[2] = (uint64_t)z & MASK52;
+               cc = (uint64_t)(z >> 52);
+               z = (unsigned __int128)b[4] * (unsigned __int128)x
+                       + (unsigned __int128)t[4] + cc
+                       + ((unsigned __int128)f << 48)
+                       - ((unsigned __int128)f << 16);
+               t[3] = (uint64_t)z & MASK52;
+               t[4] = (uint64_t)(z >> 52);
+
+               /*
+                * t[4] may be up to 62 bits here; we need to do a
+                * partial reduction. Note that limbs t[0] to t[3]
+                * fit on 52 bits each.
+                */
+               s = t[4] >> 48;             /* s < 2^14 */
+               t[0] += s;                  /* t[0] < 2^52 + 2^14 */
+               w = t[1] - (s << 44);
+               t[1] = w & MASK52;          /* t[1] < 2^52 */
+               cc = -(w >> 52) & 0xFFF;    /* cc < 16 */
+               w = t[2] - cc;
+               t[2] = w & MASK52;          /* t[2] < 2^52 */
+               cc = w >> 63;               /* cc = 0 or 1 */
+               w = t[3] - cc - (s << 36);
+               t[3] = w & MASK52;          /* t[3] < 2^52 */
+               cc = w >> 63;               /* cc = 0 or 1 */
+               w = t[4] & MASK48;
+               t[4] = w + (s << 16) - cc;  /* t[4] < 2^48 + 2^30 */
+
+               /*
+                * The final t[4] cannot overflow because cc is 0 or 1,
+                * and cc can be 1 only if s != 0.
+                */
+       }
+
+       d[0] = t[0];
+       d[1] = t[1];
+       d[2] = t[2];
+       d[3] = t[3];
+       d[4] = t[4];
+
+#elif BR_UMUL128
+
+       int i;
+       uint64_t t[5];
+
+       t[0] = 0;
+       t[1] = 0;
+       t[2] = 0;
+       t[3] = 0;
+       t[4] = 0;
+       for (i = 0; i < 5; i ++) {
+               uint64_t x, f, cc, w, s, zh, zl;
+               unsigned char k;
+
+               /*
+                * Since limbs of a[] and b[] fit on 56 bits each,
+                * each individual product fits on 112 bits. Also,
+                * the factor f fits on 52 bits, so f<<48 fits on
+                * 112 bits too. This guarantees that carries (cc)
+                * will fit on 62 bits, thus no overflow.
+                *
+                * The operations below compute:
+                *   t <- (t + x*b + f*p) / 2^64
+                */
+               x = a[i];
+               zl = _umul128(b[0], x, &zh);
+               k = _addcarry_u64(0, t[0], zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               f = zl & MASK52;
+               cc = (zl >> 52) | (zh << 12);
+
+               zl = _umul128(b[1], x, &zh);
+               k = _addcarry_u64(0, t[1], zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, cc, zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, f << 44, zl, &zl);
+               (void)_addcarry_u64(k, f >> 20, zh, &zh);
+               t[0] = zl & MASK52;
+               cc = (zl >> 52) | (zh << 12);
+
+               zl = _umul128(b[2], x, &zh);
+               k = _addcarry_u64(0, t[2], zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, cc, zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               t[1] = zl & MASK52;
+               cc = (zl >> 52) | (zh << 12);
+
+               zl = _umul128(b[3], x, &zh);
+               k = _addcarry_u64(0, t[3], zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, cc, zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, f << 36, zl, &zl);
+               (void)_addcarry_u64(k, f >> 28, zh, &zh);
+               t[2] = zl & MASK52;
+               cc = (zl >> 52) | (zh << 12);
+
+               zl = _umul128(b[4], x, &zh);
+               k = _addcarry_u64(0, t[4], zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, cc, zl, &zl);
+               (void)_addcarry_u64(k, 0, zh, &zh);
+               k = _addcarry_u64(0, f << 48, zl, &zl);
+               (void)_addcarry_u64(k, f >> 16, zh, &zh);
+               k = _subborrow_u64(0, zl, f << 16, &zl);
+               (void)_subborrow_u64(k, zh, f >> 48, &zh);
+               t[3] = zl & MASK52;
+               t[4] = (zl >> 52) | (zh << 12);
+
+               /*
+                * t[4] may be up to 62 bits here; we need to do a
+                * partial reduction. Note that limbs t[0] to t[3]
+                * fit on 52 bits each.
+                */
+               s = t[4] >> 48;             /* s < 2^14 */
+               t[0] += s;                  /* t[0] < 2^52 + 2^14 */
+               w = t[1] - (s << 44);
+               t[1] = w & MASK52;          /* t[1] < 2^52 */
+               cc = -(w >> 52) & 0xFFF;    /* cc < 16 */
+               w = t[2] - cc;
+               t[2] = w & MASK52;          /* t[2] < 2^52 */
+               cc = w >> 63;               /* cc = 0 or 1 */
+               w = t[3] - cc - (s << 36);
+               t[3] = w & MASK52;          /* t[3] < 2^52 */
+               cc = w >> 63;               /* cc = 0 or 1 */
+               w = t[4] & MASK48;
+               t[4] = w + (s << 16) - cc;  /* t[4] < 2^48 + 2^30 */
+
+               /*
+                * The final t[4] cannot overflow because cc is 0 or 1,
+                * and cc can be 1 only if s != 0.
+                */
+       }
+
+       d[0] = t[0];
+       d[1] = t[1];
+       d[2] = t[2];
+       d[3] = t[3];
+       d[4] = t[4];
+
+#endif
+}
+
+/*
+ * Montgomery squaring in the field; currently a basic wrapper around
+ * multiplication (inline, should be optimized away).
+ * TODO: see if some extra speed can be gained here.
+ */
+static inline void
+f256_montysquare(uint64_t *d, const uint64_t *a)
+{
+       f256_montymul(d, a, a);
+}
+
+/*
+ * Convert to Montgomery representation.
+ */
+static void
+f256_tomonty(uint64_t *d, const uint64_t *a)
+{
+       /*
+        * R2 = 2^520 mod p.
+        * If R = 2^260 mod p, then R2 = R^2 mod p; and the Montgomery
+        * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
+        * conversion to Montgomery representation.
+        */
+       static const uint64_t R2[] = {
+               0x0000000000300, 0xFFFFFFFF00000, 0xFFFFEFFFFFFFB,
+               0xFDFFFFFFFFFFF, 0x0000004FFFFFF
+       };
+
+       f256_montymul(d, a, R2);
+}
+
+/*
+ * Convert from Montgomery representation.
+ */
+static void
+f256_frommonty(uint64_t *d, const uint64_t *a)
+{
+       /*
+        * Montgomery multiplication by 1 is division by 2^260 modulo p.
+        */
+       static const uint64_t one[] = { 1, 0, 0, 0, 0 };
+
+       f256_montymul(d, a, one);
+}
+
+/*
+ * Inversion in the field. If the source value is 0 modulo p, then this
+ * returns 0 or p. This function uses Montgomery representation.
+ */
+static void
+f256_invert(uint64_t *d, const uint64_t *a)
+{
+       /*
+        * We compute a^(p-2) mod p. The exponent pattern (from high to
+        * low) is:
+        *  - 32 bits of value 1
+        *  - 31 bits of value 0
+        *  - 1 bit of value 1
+        *  - 96 bits of value 0
+        *  - 94 bits of value 1
+        *  - 1 bit of value 0
+        *  - 1 bit of value 1
+        * To speed up the square-and-multiply algorithm, we precompute
+        * a^(2^31-1).
+        */
+
+       uint64_t r[5], t[5];
+       int i;
+
+       memcpy(t, a, sizeof t);
+       for (i = 0; i < 30; i ++) {
+               f256_montysquare(t, t);
+               f256_montymul(t, t, a);
+       }
+
+       memcpy(r, t, sizeof t);
+       for (i = 224; i >= 0; i --) {
+               f256_montysquare(r, r);
+               switch (i) {
+               case 0:
+               case 2:
+               case 192:
+               case 224:
+                       f256_montymul(r, r, a);
+                       break;
+               case 3:
+               case 34:
+               case 65:
+                       f256_montymul(r, r, t);
+                       break;
+               }
+       }
+       memcpy(d, r, sizeof r);
+}
+
+/*
+ * Finalize reduction.
+ * Input value should be partially reduced.
+ * On output, limbs a[0] to a[3] fit on 52 bits each, limb a[4] fits
+ * on 48 bits, and the integer is less than p.
+ */
+static inline void
+f256_final_reduce(uint64_t *a)
+{
+       uint64_t r[5], t[5], w, cc;
+       int i;
+
+       /*
+        * Propagate carries to ensure that limbs 0 to 3 fit on 52 bits.
+        */
+       cc = 0;
+       for (i = 0; i < 5; i ++) {
+               w = a[i] + cc;
+               r[i] = w & MASK52;
+               cc = w >> 52;
+       }
+
+       /*
+        * We compute t = r + (2^256 - p) = r + 2^224 - 2^192 - 2^96 + 1.
+        * If t < 2^256, then r < p, and we return r. Otherwise, we
+        * want to return r - p = t - 2^256.
+        */
+
+       /*
+        * Add 2^224 + 1, and propagate carries to ensure that limbs
+        * t[0] to t[3] fit in 52 bits each.
+        */
+       w = r[0] + 1;
+       t[0] = w & MASK52;
+       cc = w >> 52;
+       w = r[1] + cc;
+       t[1] = w & MASK52;
+       cc = w >> 52;
+       w = r[2] + cc;
+       t[2] = w & MASK52;
+       cc = w >> 52;
+       w = r[3] + cc;
+       t[3] = w & MASK52;
+       cc = w >> 52;
+       t[4] = r[4] + cc + BIT(16);
+
+       /*
+        * Subtract 2^192 + 2^96. Since we just added 2^224 + 1, the
+        * result cannot be negative.
+        */
+       w = t[1] - BIT(44);
+       t[1] = w & MASK52;
+       cc = w >> 63;
+       w = t[2] - cc;
+       t[2] = w & MASK52;
+       cc = w >> 63;
+       w = t[3] - BIT(36);
+       t[3] = w & MASK52;
+       cc = w >> 63;
+       t[4] -= cc;
+
+       /*
+        * If the top limb t[4] fits on 48 bits, then r[] is already
+        * in the proper range. Otherwise, t[] is the value to return
+        * (truncated to 256 bits).
+        */
+       cc = -(t[4] >> 48);
+       t[4] &= MASK48;
+       for (i = 0; i < 5; i ++) {
+               a[i] = r[i] ^ (cc & (r[i] ^ t[i]));
+       }
+}
+
+/*
+ * Points in affine and Jacobian coordinates.
+ *
+ *  - In affine coordinates, the point-at-infinity cannot be encoded.
+ *  - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
+ *    if Z = 0 then this is the point-at-infinity.
+ */
+typedef struct {
+       uint64_t x[5];
+       uint64_t y[5];
+} p256_affine;
+
+typedef struct {
+       uint64_t x[5];
+       uint64_t y[5];
+       uint64_t z[5];
+} p256_jacobian;
+
+/*
+ * Decode a field element (unsigned big endian notation).
+ */
+static void
+f256_decode(uint64_t *a, const unsigned char *buf)
+{
+       uint64_t w0, w1, w2, w3;
+
+       w3 = br_dec64be(buf +  0);
+       w2 = br_dec64be(buf +  8);
+       w1 = br_dec64be(buf + 16);
+       w0 = br_dec64be(buf + 24);
+       a[0] = w0 & MASK52;
+       a[1] = ((w0 >> 52) | (w1 << 12)) & MASK52;
+       a[2] = ((w1 >> 40) | (w2 << 24)) & MASK52;
+       a[3] = ((w2 >> 28) | (w3 << 36)) & MASK52;
+       a[4] = w3 >> 16;
+}
+
+/*
+ * Encode a field element (unsigned big endian notation). The field
+ * element MUST be fully reduced.
+ */
+static void
+f256_encode(unsigned char *buf, const uint64_t *a)
+{
+       uint64_t w0, w1, w2, w3;
+
+       w0 = a[0] | (a[1] << 52);
+       w1 = (a[1] >> 12) | (a[2] << 40);
+       w2 = (a[2] >> 24) | (a[3] << 28);
+       w3 = (a[3] >> 36) | (a[4] << 16);
+       br_enc64be(buf +  0, w3);
+       br_enc64be(buf +  8, w2);
+       br_enc64be(buf + 16, w1);
+       br_enc64be(buf + 24, w0);
+}
+
+/*
+ * Decode a point. The returned point is in Jacobian coordinates, but
+ * with z = 1. If the encoding is invalid, or encodes a point which is
+ * not on the curve, or encodes the point at infinity, then this function
+ * returns 0. Otherwise, 1 is returned.
+ *
+ * The buffer is assumed to have length exactly 65 bytes.
+ */
+static uint32_t
+point_decode(p256_jacobian *P, const unsigned char *buf)
+{
+       uint64_t x[5], y[5], t[5], x3[5], tt;
+       uint32_t r;
+
+       /*
+        * Header byte shall be 0x04.
+        */
+       r = EQ(buf[0], 0x04);
+
+       /*
+        * Decode X and Y coordinates, and convert them into
+        * Montgomery representation.
+        */
+       f256_decode(x, buf +  1);
+       f256_decode(y, buf + 33);
+       f256_tomonty(x, x);
+       f256_tomonty(y, y);
+
+       /*
+        * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
+        * Note that the Montgomery representation of 0 is 0. We must
+        * take care to apply the final reduction to make sure we have
+        * 0 and not p.
+        */
+       f256_montysquare(t, y);
+       f256_montysquare(x3, x);
+       f256_montymul(x3, x3, x);
+       f256_sub(t, t, x3);
+       f256_add(t, t, x);
+       f256_add(t, t, x);
+       f256_add(t, t, x);
+       f256_sub(t, t, P256_B_MONTY);
+       f256_final_reduce(t);
+       tt = t[0] | t[1] | t[2] | t[3] | t[4];
+       r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
+
+       /*
+        * Return the point in Jacobian coordinates (and Montgomery
+        * representation).
+        */
+       memcpy(P->x, x, sizeof x);
+       memcpy(P->y, y, sizeof y);
+       memcpy(P->z, F256_R, sizeof F256_R);
+       return r;
+}
+
+/*
+ * Final conversion for a point:
+ *  - The point is converted back to affine coordinates.
+ *  - Final reduction is performed.
+ *  - The point is encoded into the provided buffer.
+ *
+ * If the point is the point-at-infinity, all operations are performed,
+ * but the buffer contents are indeterminate, and 0 is returned. Otherwise,
+ * the encoded point is written in the buffer, and 1 is returned.
+ */
+static uint32_t
+point_encode(unsigned char *buf, const p256_jacobian *P)
+{
+       uint64_t t1[5], t2[5], z;
+
+       /* Set t1 = 1/z^2 and t2 = 1/z^3. */
+       f256_invert(t2, P->z);
+       f256_montysquare(t1, t2);
+       f256_montymul(t2, t2, t1);
+
+       /* Compute affine coordinates x (in t1) and y (in t2). */
+       f256_montymul(t1, P->x, t1);
+       f256_montymul(t2, P->y, t2);
+
+       /* Convert back from Montgomery representation, and finalize
+          reductions. */
+       f256_frommonty(t1, t1);
+       f256_frommonty(t2, t2);
+       f256_final_reduce(t1);
+       f256_final_reduce(t2);
+
+       /* Encode. */
+       buf[0] = 0x04;
+       f256_encode(buf +  1, t1);
+       f256_encode(buf + 33, t2);
+
+       /* Return success if and only if P->z != 0. */
+       z = P->z[0] | P->z[1] | P->z[2] | P->z[3] | P->z[4];
+       return NEQ((uint32_t)(z | z >> 32), 0);
+}
+
+/*
+ * Point doubling in Jacobian coordinates: point P is doubled.
+ * Note: if the source point is the point-at-infinity, then the result is
+ * still the point-at-infinity, which is correct. Moreover, if the three
+ * coordinates were zero, then they still are zero in the returned value.
+ */
+static void
+p256_double(p256_jacobian *P)
+{
+       /*
+        * Doubling formulas are:
+        *
+        *   s = 4*x*y^2
+        *   m = 3*(x + z^2)*(x - z^2)
+        *   x' = m^2 - 2*s
+        *   y' = m*(s - x') - 8*y^4
+        *   z' = 2*y*z
+        *
+        * These formulas work for all points, including points of order 2
+        * and points at infinity:
+        *   - If y = 0 then z' = 0. But there is no such point in P-256
+        *     anyway.
+        *   - If z = 0 then z' = 0.
+        */
+       uint64_t t1[5], t2[5], t3[5], t4[5];
+
+       /*
+        * Compute z^2 in t1.
+        */
+       f256_montysquare(t1, P->z);
+
+       /*
+        * Compute x-z^2 in t2 and x+z^2 in t1.
+        */
+       f256_add(t2, P->x, t1);
+       f256_sub(t1, P->x, t1);
+
+       /*
+        * Compute 3*(x+z^2)*(x-z^2) in t1.
+        */
+       f256_montymul(t3, t1, t2);
+       f256_add(t1, t3, t3);
+       f256_add(t1, t3, t1);
+
+       /*
+        * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
+        */
+       f256_montysquare(t3, P->y);
+       f256_add(t3, t3, t3);
+       f256_montymul(t2, P->x, t3);
+       f256_add(t2, t2, t2);
+
+       /*
+        * Compute x' = m^2 - 2*s.
+        */
+       f256_montysquare(P->x, t1);
+       f256_sub(P->x, P->x, t2);
+       f256_sub(P->x, P->x, t2);
+
+       /*
+        * Compute z' = 2*y*z.
+        */
+       f256_montymul(t4, P->y, P->z);
+       f256_add(P->z, t4, t4);
+       f256_partial_reduce(P->z);
+
+       /*
+        * Compute y' = m*(s - x') - 8*y^4. Note that we already have
+        * 2*y^2 in t3.
+        */
+       f256_sub(t2, t2, P->x);
+       f256_montymul(P->y, t1, t2);
+       f256_montysquare(t4, t3);
+       f256_add(t4, t4, t4);
+       f256_sub(P->y, P->y, t4);
+}
+
+/*
+ * Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
+ * This function computes the wrong result in the following cases:
+ *
+ *   - If P1 == 0 but P2 != 0
+ *   - If P1 != 0 but P2 == 0
+ *   - If P1 == P2
+ *
+ * In all three cases, P1 is set to the point at infinity.
+ *
+ * Returned value is 0 if one of the following occurs:
+ *
+ *   - P1 and P2 have the same Y coordinate.
+ *   - P1 == 0 and P2 == 0.
+ *   - The Y coordinate of one of the points is 0 and the other point is
+ *     the point at infinity.
+ *
+ * The third case cannot actually happen with valid points, since a point
+ * with Y == 0 is a point of order 2, and there is no point of order 2 on
+ * curve P-256.
+ *
+ * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
+ * can apply the following:
+ *
+ *   - If the result is not the point at infinity, then it is correct.
+ *   - Otherwise, if the returned value is 1, then this is a case of
+ *     P1+P2 == 0, so the result is indeed the point at infinity.
+ *   - Otherwise, P1 == P2, so a "double" operation should have been
+ *     performed.
+ *
+ * Note that you can get a returned value of 0 with a correct result,
+ * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
+ */
+static uint32_t
+p256_add(p256_jacobian *P1, const p256_jacobian *P2)
+{
+       /*
+        * Addtions formulas are:
+        *
+        *   u1 = x1 * z2^2
+        *   u2 = x2 * z1^2
+        *   s1 = y1 * z2^3
+        *   s2 = y2 * z1^3
+        *   h = u2 - u1
+        *   r = s2 - s1
+        *   x3 = r^2 - h^3 - 2 * u1 * h^2
+        *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
+        *   z3 = h * z1 * z2
+        */
+       uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt;
+       uint32_t ret;
+
+       /*
+        * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
+        */
+       f256_montysquare(t3, P2->z);
+       f256_montymul(t1, P1->x, t3);
+       f256_montymul(t4, P2->z, t3);
+       f256_montymul(t3, P1->y, t4);
+
+       /*
+        * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
+        */
+       f256_montysquare(t4, P1->z);
+       f256_montymul(t2, P2->x, t4);
+       f256_montymul(t5, P1->z, t4);
+       f256_montymul(t4, P2->y, t5);
+
+       /*
+        * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
+        * We need to test whether r is zero, so we will do some extra
+        * reduce.
+        */
+       f256_sub(t2, t2, t1);
+       f256_sub(t4, t4, t3);
+       f256_final_reduce(t4);
+       tt = t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
+       ret = (uint32_t)(tt | (tt >> 32));
+       ret = (ret | -ret) >> 31;
+
+       /*
+        * Compute u1*h^2 (in t6) and h^3 (in t5);
+        */
+       f256_montysquare(t7, t2);
+       f256_montymul(t6, t1, t7);
+       f256_montymul(t5, t7, t2);
+
+       /*
+        * Compute x3 = r^2 - h^3 - 2*u1*h^2.
+        */
+       f256_montysquare(P1->x, t4);
+       f256_sub(P1->x, P1->x, t5);
+       f256_sub(P1->x, P1->x, t6);
+       f256_sub(P1->x, P1->x, t6);
+
+       /*
+        * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
+        */
+       f256_sub(t6, t6, P1->x);
+       f256_montymul(P1->y, t4, t6);
+       f256_montymul(t1, t5, t3);
+       f256_sub(P1->y, P1->y, t1);
+
+       /*
+        * Compute z3 = h*z1*z2.
+        */
+       f256_montymul(t1, P1->z, P2->z);
+       f256_montymul(P1->z, t1, t2);
+
+       return ret;
+}
+
+/*
+ * Point addition (mixed coordinates): P1 is replaced with P1+P2.
+ * This is a specialised function for the case when P2 is a non-zero point
+ * in affine coordinates.
+ *
+ * This function computes the wrong result in the following cases:
+ *
+ *   - If P1 == 0
+ *   - If P1 == P2
+ *
+ * In both cases, P1 is set to the point at infinity.
+ *
+ * Returned value is 0 if one of the following occurs:
+ *
+ *   - P1 and P2 have the same Y (affine) coordinate.
+ *   - The Y coordinate of P2 is 0 and P1 is the point at infinity.
+ *
+ * The second case cannot actually happen with valid points, since a point
+ * with Y == 0 is a point of order 2, and there is no point of order 2 on
+ * curve P-256.
+ *
+ * Therefore, assuming that P1 != 0 on input, then the caller
+ * can apply the following:
+ *
+ *   - If the result is not the point at infinity, then it is correct.
+ *   - Otherwise, if the returned value is 1, then this is a case of
+ *     P1+P2 == 0, so the result is indeed the point at infinity.
+ *   - Otherwise, P1 == P2, so a "double" operation should have been
+ *     performed.
+ *
+ * Again, a value of 0 may be returned in some cases where the addition
+ * result is correct.
+ */
+static uint32_t
+p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
+{
+       /*
+        * Addtions formulas are:
+        *
+        *   u1 = x1
+        *   u2 = x2 * z1^2
+        *   s1 = y1
+        *   s2 = y2 * z1^3
+        *   h = u2 - u1
+        *   r = s2 - s1
+        *   x3 = r^2 - h^3 - 2 * u1 * h^2
+        *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
+        *   z3 = h * z1
+        */
+       uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt;
+       uint32_t ret;
+
+       /*
+        * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
+        */
+       memcpy(t1, P1->x, sizeof t1);
+       memcpy(t3, P1->y, sizeof t3);
+
+       /*
+        * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
+        */
+       f256_montysquare(t4, P1->z);
+       f256_montymul(t2, P2->x, t4);
+       f256_montymul(t5, P1->z, t4);
+       f256_montymul(t4, P2->y, t5);
+
+       /*
+        * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
+        * We need to test whether r is zero, so we will do some extra
+        * reduce.
+        */
+       f256_sub(t2, t2, t1);
+       f256_sub(t4, t4, t3);
+       f256_final_reduce(t4);
+       tt = t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
+       ret = (uint32_t)(tt | (tt >> 32));
+       ret = (ret | -ret) >> 31;
+
+       /*
+        * Compute u1*h^2 (in t6) and h^3 (in t5);
+        */
+       f256_montysquare(t7, t2);
+       f256_montymul(t6, t1, t7);
+       f256_montymul(t5, t7, t2);
+
+       /*
+        * Compute x3 = r^2 - h^3 - 2*u1*h^2.
+        */
+       f256_montysquare(P1->x, t4);
+       f256_sub(P1->x, P1->x, t5);
+       f256_sub(P1->x, P1->x, t6);
+       f256_sub(P1->x, P1->x, t6);
+
+       /*
+        * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
+        */
+       f256_sub(t6, t6, P1->x);
+       f256_montymul(P1->y, t4, t6);
+       f256_montymul(t1, t5, t3);
+       f256_sub(P1->y, P1->y, t1);
+
+       /*
+        * Compute z3 = h*z1*z2.
+        */
+       f256_montymul(P1->z, P1->z, t2);
+
+       return ret;
+}
+
+#if 0
+/* unused */
+/*
+ * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
+ * This is a specialised function for the case when P2 is a non-zero point
+ * in affine coordinates.
+ *
+ * This function returns the correct result in all cases.
+ */
+static uint32_t
+p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
+{
+       /*
+        * Addtions formulas, in the general case, are:
+        *
+        *   u1 = x1
+        *   u2 = x2 * z1^2
+        *   s1 = y1
+        *   s2 = y2 * z1^3
+        *   h = u2 - u1
+        *   r = s2 - s1
+        *   x3 = r^2 - h^3 - 2 * u1 * h^2
+        *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
+        *   z3 = h * z1
+        *
+        * These formulas mishandle the two following cases:
+        *
+        *  - If P1 is the point-at-infinity (z1 = 0), then z3 is
+        *    incorrectly set to 0.
+        *
+        *  - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
+        *    are all set to 0.
+        *
+        * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
+        * we correctly get z3 = 0 (the point-at-infinity).
+        *
+        * To fix the case P1 = 0, we perform at the end a copy of P2
+        * over P1, conditional to z1 = 0.
+        *
+        * For P1 = P2: in that case, both h and r are set to 0, and
+        * we get x3, y3 and z3 equal to 0. We can test for that
+        * occurrence to make a mask which will be all-one if P1 = P2,
+        * or all-zero otherwise; then we can compute the double of P2
+        * and add it, combined with the mask, to (x3,y3,z3).
+        *
+        * Using the doubling formulas in p256_double() on (x2,y2),
+        * simplifying since P2 is affine (i.e. z2 = 1, implicitly),
+        * we get:
+        *   s = 4*x2*y2^2
+        *   m = 3*(x2 + 1)*(x2 - 1)
+        *   x' = m^2 - 2*s
+        *   y' = m*(s - x') - 8*y2^4
+        *   z' = 2*y2
+        * which requires only 6 multiplications. Added to the 11
+        * multiplications of the normal mixed addition in Jacobian
+        * coordinates, we get a cost of 17 multiplications in total.
+        */
+       uint64_t t1[5], t2[5], t3[5], t4[5], t5[5], t6[5], t7[5], tt, zz;
+       int i;
+
+       /*
+        * Set zz to -1 if P1 is the point at infinity, 0 otherwise.
+        */
+       zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3] | P1->z[4];
+       zz = ((zz | -zz) >> 63) - (uint64_t)1;
+
+       /*
+        * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
+        */
+       memcpy(t1, P1->x, sizeof t1);
+       memcpy(t3, P1->y, sizeof t3);
+
+       /*
+        * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
+        */
+       f256_montysquare(t4, P1->z);
+       f256_montymul(t2, P2->x, t4);
+       f256_montymul(t5, P1->z, t4);
+       f256_montymul(t4, P2->y, t5);
+
+       /*
+        * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
+        * reduce.
+        */
+       f256_sub(t2, t2, t1);
+       f256_sub(t4, t4, t3);
+
+       /*
+        * If both h = 0 and r = 0, then P1 = P2, and we want to set
+        * the mask tt to -1; otherwise, the mask will be 0.
+        */
+       f256_final_reduce(t2);
+       f256_final_reduce(t4);
+       tt = t2[0] | t2[1] | t2[2] | t2[3] | t2[4]
+               | t4[0] | t4[1] | t4[2] | t4[3] | t4[4];
+       tt = ((tt | -tt) >> 63) - (uint64_t)1;
+
+       /*
+        * Compute u1*h^2 (in t6) and h^3 (in t5);
+        */
+       f256_montysquare(t7, t2);
+       f256_montymul(t6, t1, t7);
+       f256_montymul(t5, t7, t2);
+
+       /*
+        * Compute x3 = r^2 - h^3 - 2*u1*h^2.
+        */
+       f256_montysquare(P1->x, t4);
+       f256_sub(P1->x, P1->x, t5);
+       f256_sub(P1->x, P1->x, t6);
+       f256_sub(P1->x, P1->x, t6);
+
+       /*
+        * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
+        */
+       f256_sub(t6, t6, P1->x);
+       f256_montymul(P1->y, t4, t6);
+       f256_montymul(t1, t5, t3);
+       f256_sub(P1->y, P1->y, t1);
+
+       /*
+        * Compute z3 = h*z1.
+        */
+       f256_montymul(P1->z, P1->z, t2);
+
+       /*
+        * The "double" result, in case P1 = P2.
+        */
+
+       /*
+        * Compute z' = 2*y2 (in t1).
+        */
+       f256_add(t1, P2->y, P2->y);
+       f256_partial_reduce(t1);
+
+       /*
+        * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
+        */
+       f256_montysquare(t2, P2->y);
+       f256_add(t2, t2, t2);
+       f256_add(t3, t2, t2);
+       f256_montymul(t3, P2->x, t3);
+
+       /*
+        * Compute m = 3*(x2^2 - 1) (in t4).
+        */
+       f256_montysquare(t4, P2->x);
+       f256_sub(t4, t4, F256_R);
+       f256_add(t5, t4, t4);
+       f256_add(t4, t4, t5);
+
+       /*
+        * Compute x' = m^2 - 2*s (in t5).
+        */
+       f256_montysquare(t5, t4);
+       f256_sub(t5, t3);
+       f256_sub(t5, t3);
+
+       /*
+        * Compute y' = m*(s - x') - 8*y2^4 (in t6).
+        */
+       f256_sub(t6, t3, t5);
+       f256_montymul(t6, t6, t4);
+       f256_montysquare(t7, t2);
+       f256_sub(t6, t6, t7);
+       f256_sub(t6, t6, t7);
+
+       /*
+        * We now have the alternate (doubling) coordinates in (t5,t6,t1).
+        * We combine them with (x3,y3,z3).
+        */
+       for (i = 0; i < 5; i ++) {
+               P1->x[i] |= tt & t5[i];
+               P1->y[i] |= tt & t6[i];
+               P1->z[i] |= tt & t1[i];
+       }
+
+       /*
+        * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
+        * then we want to replace the result with a copy of P2. The
+        * test on z1 was done at the start, in the zz mask.
+        */
+       for (i = 0; i < 5; i ++) {
+               P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
+               P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
+               P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
+       }
+}
+#endif
+
+/*
+ * Inner function for computing a point multiplication. A window is
+ * provided, with points 1*P to 15*P in affine coordinates.
+ *
+ * Assumptions:
+ *  - All provided points are valid points on the curve.
+ *  - Multiplier is non-zero, and smaller than the curve order.
+ *  - Everything is in Montgomery representation.
+ */
+static void
+point_mul_inner(p256_jacobian *R, const p256_affine *W,
+       const unsigned char *k, size_t klen)
+{
+       p256_jacobian Q;
+       uint32_t qz;
+
+       memset(&Q, 0, sizeof Q);
+       qz = 1;
+       while (klen -- > 0) {
+               int i;
+               unsigned bk;
+
+               bk = *k ++;
+               for (i = 0; i < 2; i ++) {
+                       uint32_t bits;
+                       uint32_t bnz;
+                       p256_affine T;
+                       p256_jacobian U;
+                       uint32_t n;
+                       int j;
+                       uint64_t m;
+
+                       p256_double(&Q);
+                       p256_double(&Q);
+                       p256_double(&Q);
+                       p256_double(&Q);
+                       bits = (bk >> 4) & 0x0F;
+                       bnz = NEQ(bits, 0);
+
+                       /*
+                        * Lookup point in window. If the bits are 0,
+                        * we get something invalid, which is not a
+                        * problem because we will use it only if the
+                        * bits are non-zero.
+                        */
+                       memset(&T, 0, sizeof T);
+                       for (n = 0; n < 15; n ++) {
+                               m = -(uint64_t)EQ(bits, n + 1);
+                               T.x[0] |= m & W[n].x[0];
+                               T.x[1] |= m & W[n].x[1];
+                               T.x[2] |= m & W[n].x[2];
+                               T.x[3] |= m & W[n].x[3];
+                               T.x[4] |= m & W[n].x[4];
+                               T.y[0] |= m & W[n].y[0];
+                               T.y[1] |= m & W[n].y[1];
+                               T.y[2] |= m & W[n].y[2];
+                               T.y[3] |= m & W[n].y[3];
+                               T.y[4] |= m & W[n].y[4];
+                       }
+
+                       U = Q;
+                       p256_add_mixed(&U, &T);
+
+                       /*
+                        * If qz is still 1, then Q was all-zeros, and this
+                        * is conserved through p256_double().
+                        */
+                       m = -(uint64_t)(bnz & qz);
+                       for (j = 0; j < 5; j ++) {
+                               Q.x[j] ^= m & (Q.x[j] ^ T.x[j]);
+                               Q.y[j] ^= m & (Q.y[j] ^ T.y[j]);
+                               Q.z[j] ^= m & (Q.z[j] ^ F256_R[j]);
+                       }
+                       CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
+                       qz &= ~bnz;
+                       bk <<= 4;
+               }
+       }
+       *R = Q;
+}
+
+/*
+ * Convert a window from Jacobian to affine coordinates. A single
+ * field inversion is used. This function works for windows up to
+ * 32 elements.
+ *
+ * The destination array (aff[]) and the source array (jac[]) may
+ * overlap, provided that the start of aff[] is not after the start of
+ * jac[]. Even if the arrays do _not_ overlap, the source array is
+ * modified.
+ */
+static void
+window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
+{
+       /*
+        * Convert the window points to affine coordinates. We use the
+        * following trick to mutualize the inversion computation: if
+        * we have z1, z2, z3, and z4, and want to invert all of them,
+        * we compute u = 1/(z1*z2*z3*z4), and then we have:
+        *   1/z1 = u*z2*z3*z4
+        *   1/z2 = u*z1*z3*z4
+        *   1/z3 = u*z1*z2*z4
+        *   1/z4 = u*z1*z2*z3
+        *
+        * The partial products are computed recursively:
+        *
+        *  - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
+        *  - on input (z_1,z_2,... z_n):
+        *       recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
+        *       recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
+        *       multiply elements of r1 by m2 -> s1
+        *       multiply elements of r2 by m1 -> s2
+        *       return r1||r2 and m1*m2
+        *
+        * In the example below, we suppose that we have 14 elements.
+        * Let z1, z2,... zE be the 14 values to invert (index noted in
+        * hexadecimal, starting at 1).
+        *
+        *  - Depth 1:
+        *      swap(z1, z2); z12 = z1*z2
+        *      swap(z3, z4); z34 = z3*z4
+        *      swap(z5, z6); z56 = z5*z6
+        *      swap(z7, z8); z78 = z7*z8
+        *      swap(z9, zA); z9A = z9*zA
+        *      swap(zB, zC); zBC = zB*zC
+        *      swap(zD, zE); zDE = zD*zE
+        *
+        *  - Depth 2:
+        *      z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
+        *      z1234 = z12*z34
+        *      z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
+        *      z5678 = z56*z78
+        *      z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
+        *      z9ABC = z9A*zBC
+        *
+        *  - Depth 3:
+        *      z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
+        *      z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
+        *      z12345678 = z1234*z5678
+        *      z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
+        *      zD <- zD*z9ABC, zE*z9ABC
+        *      z9ABCDE = z9ABC*zDE
+        *
+        *  - Depth 4:
+        *      multiply z1..z8 by z9ABCDE
+        *      multiply z9..zE by z12345678
+        *      final z = z12345678*z9ABCDE
+        */
+
+       uint64_t z[16][5];
+       int i, k, s;
+#define zt   (z[15])
+#define zu   (z[14])
+#define zv   (z[13])
+
+       /*
+        * First recursion step (pairwise swapping and multiplication).
+        * If there is an odd number of elements, then we "invent" an
+        * extra one with coordinate Z = 1 (in Montgomery representation).
+        */
+       for (i = 0; (i + 1) < num; i += 2) {
+               memcpy(zt, jac[i].z, sizeof zt);
+               memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
+               memcpy(jac[i + 1].z, zt, sizeof zt);
+               f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
+       }
+       if ((num & 1) != 0) {
+               memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
+               memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
+       }
+
+       /*
+        * Perform further recursion steps. At the entry of each step,
+        * the process has been done for groups of 's' points. The
+        * integer k is the log2 of s.
+        */
+       for (k = 1, s = 2; s < num; k ++, s <<= 1) {
+               int n;
+
+               for (i = 0; i < num; i ++) {
+                       f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
+               }
+               n = (num + s - 1) >> k;
+               for (i = 0; i < (n >> 1); i ++) {
+                       f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
+               }
+               if ((n & 1) != 0) {
+                       memmove(z[n >> 1], z[n], sizeof zt);
+               }
+       }
+
+       /*
+        * Invert the final result, and convert all points.
+        */
+       f256_invert(zt, z[0]);
+       for (i = 0; i < num; i ++) {
+               f256_montymul(zv, jac[i].z, zt);
+               f256_montysquare(zu, zv);
+               f256_montymul(zv, zv, zu);
+               f256_montymul(aff[i].x, jac[i].x, zu);
+               f256_montymul(aff[i].y, jac[i].y, zv);
+       }
+}
+
+/*
+ * Multiply the provided point by an integer.
+ * Assumptions:
+ *  - Source point is a valid curve point.
+ *  - Source point is not the point-at-infinity.
+ *  - Integer is not 0, and is lower than the curve order.
+ * If these conditions are not met, then the result is indeterminate
+ * (but the process is still constant-time).
+ */
+static void
+p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
+{
+       union {
+               p256_affine aff[15];
+               p256_jacobian jac[15];
+       } window;
+       int i;
+
+       /*
+        * Compute window, in Jacobian coordinates.
+        */
+       window.jac[0] = *P;
+       for (i = 2; i < 16; i ++) {
+               window.jac[i - 1] = window.jac[(i >> 1) - 1];
+               if ((i & 1) == 0) {
+                       p256_double(&window.jac[i - 1]);
+               } else {
+                       p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
+               }
+       }
+
+       /*
+        * Convert the window points to affine coordinates. Point
+        * window[0] is the source point, already in affine coordinates.
+        */
+       window_to_affine(window.aff, window.jac, 15);
+
+       /*
+        * Perform point multiplication.
+        */
+       point_mul_inner(P, window.aff, k, klen);
+}
+
+/*
+ * Precomputed window for the conventional generator: P256_Gwin[n]
+ * contains (n+1)*G (affine coordinates, in Montgomery representation).
+ */
+static const p256_affine P256_Gwin[] = {
+       {
+               { 0x30D418A9143C1, 0xC4FEDB60179E7, 0x62251075BA95F,
+                 0x5C669FB732B77, 0x08905F76B5375 },
+               { 0x5357CE95560A8, 0x43A19E45CDDF2, 0x21F3258B4AB8E,
+                 0xD8552E88688DD, 0x0571FF18A5885 }
+       },
+       {
+               { 0x46D410DDD64DF, 0x0B433827D8500, 0x1490D9AA6AE3C,
+                 0xA3A832205038D, 0x06BB32E52DCF3 },
+               { 0x48D361BEE1A57, 0xB7B236FF82F36, 0x042DBE152CD7C,
+                 0xA3AA9A8FB0E92, 0x08C577517A5B8 }
+       },
+       {
+               { 0x3F904EEBC1272, 0x9E87D81FBFFAC, 0xCBBC98B027F84,
+                 0x47E46AD77DD87, 0x06936A3FD6FF7 },
+               { 0x5C1FC983A7EBD, 0xC3861FE1AB04C, 0x2EE98E583E47A,
+                 0xC06A88208311A, 0x05F06A2AB587C }
+       },
+       {
+               { 0xB50D46918DCC5, 0xD7623C17374B0, 0x100AF24650A6E,
+                 0x76ABCDAACACE8, 0x077362F591B01 },
+               { 0xF24CE4CBABA68, 0x17AD6F4472D96, 0xDDD22E1762847,
+                 0x862EB6C36DEE5, 0x04B14C39CC5AB }
+       },
+       {
+               { 0x8AAEC45C61F5C, 0x9D4B9537DBE1B, 0x76C20C90EC649,
+                 0x3C7D41CB5AAD0, 0x0907960649052 },
+               { 0x9B4AE7BA4F107, 0xF75EB882BEB30, 0x7A1F6873C568E,
+                 0x915C540A9877E, 0x03A076BB9DD1E }
+       },
+       {
+               { 0x47373E77664A1, 0xF246CEE3E4039, 0x17A3AD55AE744,
+                 0x673C50A961A5B, 0x03074B5964213 },
+               { 0x6220D377E44BA, 0x30DFF14B593D3, 0x639F11299C2B5,
+                 0x75F5424D44CEF, 0x04C9916DEA07F }
+       },
+       {
+               { 0x354EA0173B4F1, 0x3C23C00F70746, 0x23BB082BD2021,
+                 0xE03E43EAAB50C, 0x03BA5119D3123 },
+               { 0xD0303F5B9D4DE, 0x17DA67BDD2847, 0xC941956742F2F,
+                 0x8670F933BDC77, 0x0AEDD9164E240 }
+       },
+       {
+               { 0x4CD19499A78FB, 0x4BF9B345527F1, 0x2CFC6B462AB5C,
+                 0x30CDF90F02AF0, 0x0763891F62652 },
+               { 0xA3A9532D49775, 0xD7F9EBA15F59D, 0x60BBF021E3327,
+                 0xF75C23C7B84BE, 0x06EC12F2C706D }
+       },
+       {
+               { 0x6E8F264E20E8E, 0xC79A7A84175C9, 0xC8EB00ABE6BFE,
+                 0x16A4CC09C0444, 0x005B3081D0C4E },
+               { 0x777AA45F33140, 0xDCE5D45E31EB7, 0xB12F1A56AF7BE,
+                 0xF9B2B6E019A88, 0x086659CDFD835 }
+       },
+       {
+               { 0xDBD19DC21EC8C, 0x94FCF81392C18, 0x250B4998F9868,
+                 0x28EB37D2CD648, 0x0C61C947E4B34 },
+               { 0x407880DD9E767, 0x0C83FBE080C2B, 0x9BE5D2C43A899,
+                 0xAB4EF7D2D6577, 0x08719A555B3B4 }
+       },
+       {
+               { 0x260A6245E4043, 0x53E7FDFE0EA7D, 0xAC1AB59DE4079,
+                 0x072EFF3A4158D, 0x0E7090F1949C9 },
+               { 0x85612B944E886, 0xE857F61C81A76, 0xAD643D250F939,
+                 0x88DAC0DAA891E, 0x089300244125B }
+       },
+       {
+               { 0x1AA7D26977684, 0x58A345A3304B7, 0x37385EABDEDEF,
+                 0x155E409D29DEE, 0x0EE1DF780B83E },
+               { 0x12D91CBB5B437, 0x65A8956370CAC, 0xDE6D66170ED2F,
+                 0xAC9B8228CFA8A, 0x0FF57C95C3238 }
+       },
+       {
+               { 0x25634B2ED7097, 0x9156FD30DCCC4, 0x9E98110E35676,
+                 0x7594CBCD43F55, 0x038477ACC395B },
+               { 0x2B90C00EE17FF, 0xF842ED2E33575, 0x1F5BC16874838,
+                 0x7968CD06422BD, 0x0BC0876AB9E7B }
+       },
+       {
+               { 0xA35BB0CF664AF, 0x68F9707E3A242, 0x832660126E48F,
+                 0x72D2717BF54C6, 0x0AAE7333ED12C },
+               { 0x2DB7995D586B1, 0xE732237C227B5, 0x65E7DBBE29569,
+                 0xBBBD8E4193E2A, 0x052706DC3EAA1 }
+       },
+       {
+               { 0xD8B7BC60055BE, 0xD76E27E4B72BC, 0x81937003CC23E,
+                 0xA090E337424E4, 0x02AA0E43EAD3D },
+               { 0x524F6383C45D2, 0x422A41B2540B8, 0x8A4797D766355,
+                 0xDF444EFA6DE77, 0x0042170A9079A }
+       },
+};
+
+/*
+ * Multiply the conventional generator of the curve by the provided
+ * integer. Return is written in *P.
+ *
+ * Assumptions:
+ *  - Integer is not 0, and is lower than the curve order.
+ * If this conditions is not met, then the result is indeterminate
+ * (but the process is still constant-time).
+ */
+static void
+p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
+{
+       point_mul_inner(P, P256_Gwin, k, klen);
+}
+
+/*
+ * Return 1 if all of the following hold:
+ *  - klen <= 32
+ *  - k != 0
+ *  - k is lower than the curve order
+ * Otherwise, return 0.
+ *
+ * Constant-time behaviour: only klen may be observable.
+ */
+static uint32_t
+check_scalar(const unsigned char *k, size_t klen)
+{
+       uint32_t z;
+       int32_t c;
+       size_t u;
+
+       if (klen > 32) {
+               return 0;
+       }
+       z = 0;
+       for (u = 0; u < klen; u ++) {
+               z |= k[u];
+       }
+       if (klen == 32) {
+               c = 0;
+               for (u = 0; u < klen; u ++) {
+                       c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
+               }
+       } else {
+               c = -1;
+       }
+       return NEQ(z, 0) & LT0(c);
+}
+
+static uint32_t
+api_mul(unsigned char *G, size_t Glen,
+       const unsigned char *k, size_t klen, int curve)
+{
+       uint32_t r;
+       p256_jacobian P;
+
+       (void)curve;
+       if (Glen != 65) {
+               return 0;
+       }
+       r = check_scalar(k, klen);
+       r &= point_decode(&P, G);
+       p256_mul(&P, k, klen);
+       r &= point_encode(G, &P);
+       return r;
+}
+
+static size_t
+api_mulgen(unsigned char *R,
+       const unsigned char *k, size_t klen, int curve)
+{
+       p256_jacobian P;
+
+       (void)curve;
+       p256_mulgen(&P, k, klen);
+       point_encode(R, &P);
+       return 65;
+}
+
+static uint32_t
+api_muladd(unsigned char *A, const unsigned char *B, size_t len,
+       const unsigned char *x, size_t xlen,
+       const unsigned char *y, size_t ylen, int curve)
+{
+       /*
+        * We might want to use Shamir's trick here: make a composite
+        * window of u*P+v*Q points, to merge the two doubling-ladders
+        * into one. This, however, has some complications:
+        *
+        *  - During the computation, we may hit the point-at-infinity.
+        *    Thus, we would need p256_add_complete_mixed() (complete
+        *    formulas for point addition), with a higher cost (17 muls
+        *    instead of 11).
+        *
+        *  - A 4-bit window would be too large, since it would involve
+        *    16*16-1 = 255 points. For the same window size as in the
+        *    p256_mul() case, we would need to reduce the window size
+        *    to 2 bits, and thus perform twice as many non-doubling
+        *    point additions.
+        *
+        *  - The window may itself contain the point-at-infinity, and
+        *    thus cannot be in all generality be made of affine points.
+        *    Instead, we would need to make it a window of points in
+        *    Jacobian coordinates. Even p256_add_complete_mixed() would
+        *    be inappropriate.
+        *
+        * For these reasons, the code below performs two separate
+        * point multiplications, then computes the final point addition
+        * (which is both a "normal" addition, and a doubling, to handle
+        * all cases).
+        */
+
+       p256_jacobian P, Q;
+       uint32_t r, t, s;
+       uint64_t z;
+
+       (void)curve;
+       if (len != 65) {
+               return 0;
+       }
+       r = point_decode(&P, A);
+       p256_mul(&P, x, xlen);
+       if (B == NULL) {
+               p256_mulgen(&Q, y, ylen);
+       } else {
+               r &= point_decode(&Q, B);
+               p256_mul(&Q, y, ylen);
+       }
+
+       /*
+        * The final addition may fail in case both points are equal.
+        */
+       t = p256_add(&P, &Q);
+       f256_final_reduce(P.z);
+       z = P.z[0] | P.z[1] | P.z[2] | P.z[3] | P.z[4];
+       s = EQ((uint32_t)(z | (z >> 32)), 0);
+       p256_double(&Q);
+
+       /*
+        * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
+        * have the following:
+        *
+        *   s = 0, t = 0   return P (normal addition)
+        *   s = 0, t = 1   return P (normal addition)
+        *   s = 1, t = 0   return Q (a 'double' case)
+        *   s = 1, t = 1   report an error (P+Q = 0)
+        */
+       CCOPY(s & ~t, &P, &Q, sizeof Q);
+       point_encode(A, &P);
+       r &= ~(s & t);
+       return r;
+}
+
+/* see bearssl_ec.h */
+const br_ec_impl br_ec_p256_m62 = {
+       (uint32_t)0x00800000,
+       &api_generator,
+       &api_order,
+       &api_xoff,
+       &api_mul,
+       &api_mulgen,
+       &api_muladd
+};
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_p256_m62_get(void)
+{
+       return &br_ec_p256_m62;
+}
+
+#else
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_p256_m62_get(void)
+{
+       return 0;
+}
+
+#endif
diff --git a/src/ec/ec_p256_m64.c b/src/ec/ec_p256_m64.c
new file mode 100644 (file)
index 0000000..5a7ea17
--- /dev/null
@@ -0,0 +1,1730 @@
+/*
+ * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining 
+ * a copy of this software and associated documentation files (the
+ * "Software"), to deal in the Software without restriction, including
+ * without limitation the rights to use, copy, modify, merge, publish,
+ * distribute, sublicense, and/or sell copies of the Software, and to
+ * permit persons to whom the Software is furnished to do so, subject to
+ * the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be 
+ * included in all copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
+ * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+ * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
+ * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
+ * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
+ * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+
+#include "inner.h"
+
+#if BR_INT128 || BR_UMUL128
+
+#if BR_UMUL128
+#include <intrin.h>
+#endif
+
+static const unsigned char P256_G[] = {
+       0x04, 0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8,
+       0xBC, 0xE6, 0xE5, 0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D,
+       0x81, 0x2D, 0xEB, 0x33, 0xA0, 0xF4, 0xA1, 0x39, 0x45, 0xD8,
+       0x98, 0xC2, 0x96, 0x4F, 0xE3, 0x42, 0xE2, 0xFE, 0x1A, 0x7F,
+       0x9B, 0x8E, 0xE7, 0xEB, 0x4A, 0x7C, 0x0F, 0x9E, 0x16, 0x2B,
+       0xCE, 0x33, 0x57, 0x6B, 0x31, 0x5E, 0xCE, 0xCB, 0xB6, 0x40,
+       0x68, 0x37, 0xBF, 0x51, 0xF5
+};
+
+static const unsigned char P256_N[] = {
+       0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF,
+       0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD,
+       0xA7, 0x17, 0x9E, 0x84, 0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63,
+       0x25, 0x51
+};
+
+static const unsigned char *
+api_generator(int curve, size_t *len)
+{
+       (void)curve;
+       *len = sizeof P256_G;
+       return P256_G;
+}
+
+static const unsigned char *
+api_order(int curve, size_t *len)
+{
+       (void)curve;
+       *len = sizeof P256_N;
+       return P256_N;
+}
+
+static size_t
+api_xoff(int curve, size_t *len)
+{
+       (void)curve;
+       *len = 32;
+       return 1;
+}
+
+/*
+ * A field element is encoded as four 64-bit integers, in basis 2^64.
+ * Values may reach up to 2^256-1. Montgomery multiplication is used.
+ */
+
+/* R = 2^256 mod p */
+static const uint64_t F256_R[] = {
+       0x0000000000000001, 0xFFFFFFFF00000000,
+       0xFFFFFFFFFFFFFFFF, 0x00000000FFFFFFFE
+};
+
+/* Curve equation is y^2 = x^3 - 3*x + B. This constant is B*R mod p
+   (Montgomery representation of B). */
+static const uint64_t P256_B_MONTY[] = {
+       0xD89CDF6229C4BDDF, 0xACF005CD78843090,
+       0xE5A220ABF7212ED6, 0xDC30061D04874834
+};
+
+/*
+ * Addition in the field.
+ */
+static inline void
+f256_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+#if BR_INT128
+       unsigned __int128 w;
+       uint64_t t;
+
+       w = (unsigned __int128)a[0] + b[0];
+       d[0] = (uint64_t)w;
+       w = (unsigned __int128)a[1] + b[1] + (w >> 64);
+       d[1] = (uint64_t)w;
+       w = (unsigned __int128)a[2] + b[2] + (w >> 64);
+       d[2] = (uint64_t)w;
+       w = (unsigned __int128)a[3] + b[3] + (w >> 64);
+       d[3] = (uint64_t)w;
+       t = (uint64_t)(w >> 64);
+
+       /*
+        * 2^256 = 2^224 - 2^192 - 2^96 + 1 in the field.
+        */
+       w = (unsigned __int128)d[0] + t;
+       d[0] = (uint64_t)w;
+       w = (unsigned __int128)d[1] + (w >> 64) - (t << 32);
+       d[1] = (uint64_t)w;
+       /* Here, carry "w >> 64" can only be 0 or -1 */
+       w = (unsigned __int128)d[2] - ((w >> 64) & 1);
+       d[2] = (uint64_t)w;
+       /* Again, carry is 0 or -1 */
+       d[3] += (uint64_t)(w >> 64) + (t << 32) - t;
+
+#elif BR_UMUL128
+
+       unsigned char cc;
+       uint64_t t;
+
+       cc = _addcarry_u64(0, a[0], b[0], &d[0]);
+       cc = _addcarry_u64(cc, a[1], b[1], &d[1]);
+       cc = _addcarry_u64(cc, a[2], b[2], &d[2]);
+       cc = _addcarry_u64(cc, a[3], b[3], &d[3]);
+
+       /*
+        * If there is a carry, then we want to subtract p, which we
+        * do by adding 2^256 - p.
+        */
+       t = cc;
+       cc = _addcarry_u64(cc, d[0], 0, &d[0]);
+       cc = _addcarry_u64(cc, d[1], -(t << 32), &d[1]);
+       cc = _addcarry_u64(cc, d[2], -t, &d[2]);
+       (void)_addcarry_u64(cc, d[3], (t << 32) - (t << 1), &d[3]);
+
+#endif
+}
+
+/*
+ * Subtraction in the field.
+ */
+static inline void
+f256_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+#if BR_INT128
+
+       unsigned __int128 w;
+       uint64_t t;
+
+       w = (unsigned __int128)a[0] - b[0];
+       d[0] = (uint64_t)w;
+       w = (unsigned __int128)a[1] - b[1] - ((w >> 64) & 1);
+       d[1] = (uint64_t)w;
+       w = (unsigned __int128)a[2] - b[2] - ((w >> 64) & 1);
+       d[2] = (uint64_t)w;
+       w = (unsigned __int128)a[3] - b[3] - ((w >> 64) & 1);
+       d[3] = (uint64_t)w;
+       t = (uint64_t)(w >> 64) & 1;
+
+       /*
+        * p = 2^256 - 2^224 + 2^192 + 2^96 - 1.
+        */
+       w = (unsigned __int128)d[0] - t;
+       d[0] = (uint64_t)w;
+       w = (unsigned __int128)d[1] + (t << 32) - ((w >> 64) & 1);
+       d[1] = (uint64_t)w;
+       /* Here, carry "w >> 64" can only be 0 or +1 */
+       w = (unsigned __int128)d[2] + (w >> 64);
+       d[2] = (uint64_t)w;
+       /* Again, carry is 0 or +1 */
+       d[3] += (uint64_t)(w >> 64) - (t << 32) + t;
+
+#elif BR_UMUL128
+
+       unsigned char cc;
+       uint64_t t;
+
+       cc = _subborrow_u64(0, a[0], b[0], &d[0]);
+       cc = _subborrow_u64(cc, a[1], b[1], &d[1]);
+       cc = _subborrow_u64(cc, a[2], b[2], &d[2]);
+       cc = _subborrow_u64(cc, a[3], b[3], &d[3]);
+
+       /*
+        * If there is a carry, then we need to add p.
+        */
+       t = cc;
+       cc = _addcarry_u64(0, d[0], -t, &d[0]);
+       cc = _addcarry_u64(cc, d[1], (-t) >> 32, &d[1]);
+       cc = _addcarry_u64(cc, d[2], 0, &d[2]);
+       (void)_addcarry_u64(cc, d[3], t - (t << 32), &d[3]);
+
+#endif
+}
+
+/*
+ * Montgomery multiplication in the field.
+ */
+static void
+f256_montymul(uint64_t *d, const uint64_t *a, const uint64_t *b)
+{
+#if BR_INT128
+
+       uint64_t x, f, t0, t1, t2, t3, t4;
+       unsigned __int128 z, ff;
+       int i;
+
+       /*
+        * When computing d <- d + a[u]*b, we also add f*p such
+        * that d + a[u]*b + f*p is a multiple of 2^64. Since
+        * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
+        */
+
+       /*
+        * Step 1: t <- (a[0]*b + f*p) / 2^64
+        * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
+        * ensures that (a[0]*b + f*p) is a multiple of 2^64.
+        *
+        * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
+        */
+       x = a[0];
+       z = (unsigned __int128)b[0] * x;
+       f = (uint64_t)z;
+       z = (unsigned __int128)b[1] * x + (z >> 64) + (uint64_t)(f << 32);
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)b[2] * x + (z >> 64) + (uint64_t)(f >> 32);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)b[3] * x + (z >> 64) + f;
+       t2 = (uint64_t)z;
+       t3 = (uint64_t)(z >> 64);
+       ff = ((unsigned __int128)f << 64) - ((unsigned __int128)f << 32);
+       z = (unsigned __int128)t2 + (uint64_t)ff;
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
+       t3 = (uint64_t)z;
+       t4 = (uint64_t)(z >> 64);
+
+       /*
+        * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
+        */
+       for (i = 1; i < 4; i ++) {
+               x = a[i];
+
+               /* t <- (t + x*b - f) / 2^64 */
+               z = (unsigned __int128)b[0] * x + t0;
+               f = (uint64_t)z;
+               z = (unsigned __int128)b[1] * x + t1 + (z >> 64);
+               t0 = (uint64_t)z;
+               z = (unsigned __int128)b[2] * x + t2 + (z >> 64);
+               t1 = (uint64_t)z;
+               z = (unsigned __int128)b[3] * x + t3 + (z >> 64);
+               t2 = (uint64_t)z;
+               z = t4 + (z >> 64);
+               t3 = (uint64_t)z;
+               t4 = (uint64_t)(z >> 64);
+
+               /* t <- t + f*2^32, carry in the upper half of z */
+               z = (unsigned __int128)t0 + (uint64_t)(f << 32);
+               t0 = (uint64_t)z;
+               z = (z >> 64) + (unsigned __int128)t1 + (uint64_t)(f >> 32);
+               t1 = (uint64_t)z;
+
+               /* t <- t + f*2^192 - f*2^160 + f*2^128 */
+               ff = ((unsigned __int128)f << 64) 
+                       - ((unsigned __int128)f << 32) + f;
+               z = (z >> 64) + (unsigned __int128)t2 + (uint64_t)ff;
+               t2 = (uint64_t)z;
+               z = (unsigned __int128)t3 + (z >> 64) + (ff >> 64);
+               t3 = (uint64_t)z;
+               t4 += (uint64_t)(z >> 64);
+       }
+
+       /*
+        * At that point, we have computed t = (a*b + F*p) / 2^256, where
+        * F is a 256-bit integer whose limbs are the "f" coefficients
+        * in the steps above. We have:
+        *   a <= 2^256-1
+        *   b <= 2^256-1
+        *   F <= 2^256-1
+        * Hence:
+        *   a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
+        *   a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
+        * Therefore:
+        *   t < 2^256 + p - 2
+        * Since p < 2^256, it follows that:
+        *   t4 can be only 0 or 1
+        *   t - p < 2^256
+        * We can therefore subtract p from t, conditionally on t4, to
+        * get a nonnegative result that fits on 256 bits.
+        */
+       z = (unsigned __int128)t0 + t4;
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)t1 - (t4 << 32) + (z >> 64);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)t2 - (z >> 127);
+       t2 = (uint64_t)z;
+       t3 = t3 - (uint64_t)(z >> 127) - t4 + (t4 << 32);
+
+       d[0] = t0;
+       d[1] = t1;
+       d[2] = t2;
+       d[3] = t3;
+
+#elif BR_UMUL128
+
+       uint64_t x, f, t0, t1, t2, t3, t4;
+       uint64_t zl, zh, ffl, ffh;
+       unsigned char k, m;
+       int i;
+
+       /*
+        * When computing d <- d + a[u]*b, we also add f*p such
+        * that d + a[u]*b + f*p is a multiple of 2^64. Since
+        * p = -1 mod 2^64, we can compute f = d[0] + a[u]*b[0] mod 2^64.
+        */
+
+       /*
+        * Step 1: t <- (a[0]*b + f*p) / 2^64
+        * We have f = a[0]*b[0] mod 2^64. Since p = -1 mod 2^64, this
+        * ensures that (a[0]*b + f*p) is a multiple of 2^64.
+        *
+        * We also have: f*p = f*2^256 - f*2^224 + f*2^192 + f*2^96 - f.
+        */
+       x = a[0];
+
+       zl = _umul128(b[0], x, &zh);
+       f = zl;
+       t0 = zh;
+
+       zl = _umul128(b[1], x, &zh);
+       k = _addcarry_u64(0, zl, t0, &zl);
+       (void)_addcarry_u64(k, zh, 0, &zh);
+       k = _addcarry_u64(0, zl, f << 32, &zl);
+       (void)_addcarry_u64(k, zh, 0, &zh);
+       t0 = zl;
+       t1 = zh;
+
+       zl = _umul128(b[2], x, &zh);
+       k = _addcarry_u64(0, zl, t1, &zl);
+       (void)_addcarry_u64(k, zh, 0, &zh);
+       k = _addcarry_u64(0, zl, f >> 32, &zl);
+       (void)_addcarry_u64(k, zh, 0, &zh);
+       t1 = zl;
+       t2 = zh;
+
+       zl = _umul128(b[3], x, &zh);
+       k = _addcarry_u64(0, zl, t2, &zl);
+       (void)_addcarry_u64(k, zh, 0, &zh);
+       k = _addcarry_u64(0, zl, f, &zl);
+       (void)_addcarry_u64(k, zh, 0, &zh);
+       t2 = zl;
+       t3 = zh;
+
+       t4 = _addcarry_u64(0, t3, f, &t3);
+       k = _subborrow_u64(0, t2, f << 32, &t2);
+       k = _subborrow_u64(k, t3, f >> 32, &t3);
+       (void)_subborrow_u64(k, t4, 0, &t4);
+
+       /*
+        * Steps 2 to 4: t <- (t + a[i]*b + f*p) / 2^64
+        */
+       for (i = 1; i < 4; i ++) {
+               x = a[i];
+               /* f = t0 + x * b[0]; -- computed below */
+
+               /* t <- (t + x*b - f) / 2^64 */
+               zl = _umul128(b[0], x, &zh);
+               k = _addcarry_u64(0, zl, t0, &f);
+               (void)_addcarry_u64(k, zh, 0, &t0);
+
+               zl = _umul128(b[1], x, &zh);
+               k = _addcarry_u64(0, zl, t0, &zl);
+               (void)_addcarry_u64(k, zh, 0, &zh);
+               k = _addcarry_u64(0, zl, t1, &t0);
+               (void)_addcarry_u64(k, zh, 0, &t1);
+
+               zl = _umul128(b[2], x, &zh);
+               k = _addcarry_u64(0, zl, t1, &zl);
+               (void)_addcarry_u64(k, zh, 0, &zh);
+               k = _addcarry_u64(0, zl, t2, &t1);
+               (void)_addcarry_u64(k, zh, 0, &t2);
+
+               zl = _umul128(b[3], x, &zh);
+               k = _addcarry_u64(0, zl, t2, &zl);
+               (void)_addcarry_u64(k, zh, 0, &zh);
+               k = _addcarry_u64(0, zl, t3, &t2);
+               (void)_addcarry_u64(k, zh, 0, &t3);
+
+               t4 = _addcarry_u64(0, t3, t4, &t3);
+
+               /* t <- t + f*2^32, carry in k */
+               k = _addcarry_u64(0, t0, f << 32, &t0);
+               k = _addcarry_u64(k, t1, f >> 32, &t1);
+
+               /* t <- t + f*2^192 - f*2^160 + f*2^128 */
+               m = _subborrow_u64(0, f, f << 32, &ffl);
+               (void)_subborrow_u64(m, f, f >> 32, &ffh);
+               k = _addcarry_u64(k, t2, ffl, &t2);
+               k = _addcarry_u64(k, t3, ffh, &t3);
+               (void)_addcarry_u64(k, t4, 0, &t4);
+       }
+
+       /*
+        * At that point, we have computed t = (a*b + F*p) / 2^256, where
+        * F is a 256-bit integer whose limbs are the "f" coefficients
+        * in the steps above. We have:
+        *   a <= 2^256-1
+        *   b <= 2^256-1
+        *   F <= 2^256-1
+        * Hence:
+        *   a*b + F*p <= (2^256-1)*(2^256-1) + p*(2^256-1)
+        *   a*b + F*p <= 2^256*(2^256 - 2 + p) + 1 - p
+        * Therefore:
+        *   t < 2^256 + p - 2
+        * Since p < 2^256, it follows that:
+        *   t4 can be only 0 or 1
+        *   t - p < 2^256
+        * We can therefore subtract p from t, conditionally on t4, to
+        * get a nonnegative result that fits on 256 bits.
+        */
+       k = _addcarry_u64(0, t0, t4, &t0);
+       k = _addcarry_u64(k, t1, -(t4 << 32), &t1);
+       k = _addcarry_u64(k, t2, -t4, &t2);
+       (void)_addcarry_u64(k, t3, (t4 << 32) - (t4 << 1), &t3);
+
+       d[0] = t0;
+       d[1] = t1;
+       d[2] = t2;
+       d[3] = t3;
+
+#endif
+}
+
+/*
+ * Montgomery squaring in the field; currently a basic wrapper around
+ * multiplication (inline, should be optimized away).
+ * TODO: see if some extra speed can be gained here.
+ */
+static inline void
+f256_montysquare(uint64_t *d, const uint64_t *a)
+{
+       f256_montymul(d, a, a);
+}
+
+/*
+ * Convert to Montgomery representation.
+ */
+static void
+f256_tomonty(uint64_t *d, const uint64_t *a)
+{
+       /*
+        * R2 = 2^512 mod p.
+        * If R = 2^256 mod p, then R2 = R^2 mod p; and the Montgomery
+        * multiplication of a by R2 is: a*R2/R = a*R mod p, i.e. the
+        * conversion to Montgomery representation.
+        */
+       static const uint64_t R2[] = {
+               0x0000000000000003,
+               0xFFFFFFFBFFFFFFFF,
+               0xFFFFFFFFFFFFFFFE,
+               0x00000004FFFFFFFD
+       };
+
+       f256_montymul(d, a, R2);
+}
+
+/*
+ * Convert from Montgomery representation.
+ */
+static void
+f256_frommonty(uint64_t *d, const uint64_t *a)
+{
+       /*
+        * Montgomery multiplication by 1 is division by 2^256 modulo p.
+        */
+       static const uint64_t one[] = { 1, 0, 0, 0 };
+
+       f256_montymul(d, a, one);
+}
+
+/*
+ * Inversion in the field. If the source value is 0 modulo p, then this
+ * returns 0 or p. This function uses Montgomery representation.
+ */
+static void
+f256_invert(uint64_t *d, const uint64_t *a)
+{
+       /*
+        * We compute a^(p-2) mod p. The exponent pattern (from high to
+        * low) is:
+        *  - 32 bits of value 1
+        *  - 31 bits of value 0
+        *  - 1 bit of value 1
+        *  - 96 bits of value 0
+        *  - 94 bits of value 1
+        *  - 1 bit of value 0
+        *  - 1 bit of value 1
+        * To speed up the square-and-multiply algorithm, we precompute
+        * a^(2^31-1).
+        */
+
+       uint64_t r[4], t[4];
+       int i;
+
+       memcpy(t, a, sizeof t);
+       for (i = 0; i < 30; i ++) {
+               f256_montysquare(t, t);
+               f256_montymul(t, t, a);
+       }
+
+       memcpy(r, t, sizeof t);
+       for (i = 224; i >= 0; i --) {
+               f256_montysquare(r, r);
+               switch (i) {
+               case 0:
+               case 2:
+               case 192:
+               case 224:
+                       f256_montymul(r, r, a);
+                       break;
+               case 3:
+               case 34:
+               case 65:
+                       f256_montymul(r, r, t);
+                       break;
+               }
+       }
+       memcpy(d, r, sizeof r);
+}
+
+/*
+ * Finalize reduction.
+ * Input value fits on 256 bits. This function subtracts p if and only
+ * if the input is greater than or equal to p.
+ */
+static inline void
+f256_final_reduce(uint64_t *a)
+{
+#if BR_INT128
+
+       uint64_t t0, t1, t2, t3, cc;
+       unsigned __int128 z;
+
+       /*
+        * We add 2^224 - 2^192 - 2^96 + 1 to a. If there is no carry,
+        * then a < p; otherwise, the addition result we computed is
+        * the value we must return.
+        */
+       z = (unsigned __int128)a[0] + 1;
+       t0 = (uint64_t)z;
+       z = (unsigned __int128)a[1] + (z >> 64) - ((uint64_t)1 << 32);
+       t1 = (uint64_t)z;
+       z = (unsigned __int128)a[2] - (z >> 127);
+       t2 = (uint64_t)z;
+       z = (unsigned __int128)a[3] - (z >> 127) + 0xFFFFFFFF;
+       t3 = (uint64_t)z;
+       cc = -(uint64_t)(z >> 64);
+
+       a[0] ^= cc & (a[0] ^ t0);
+       a[1] ^= cc & (a[1] ^ t1);
+       a[2] ^= cc & (a[2] ^ t2);
+       a[3] ^= cc & (a[3] ^ t3);
+
+#elif BR_UMUL128
+
+       uint64_t t0, t1, t2, t3, m;
+       unsigned char k;
+
+       k = _addcarry_u64(0, a[0], (uint64_t)1, &t0);
+       k = _addcarry_u64(k, a[1], -((uint64_t)1 << 32), &t1);
+       k = _addcarry_u64(k, a[2], -(uint64_t)1, &t2);
+       k = _addcarry_u64(k, a[3], ((uint64_t)1 << 32) - 2, &t3);
+       m = -(uint64_t)k;
+
+       a[0] ^= m & (a[0] ^ t0);
+       a[1] ^= m & (a[1] ^ t1);
+       a[2] ^= m & (a[2] ^ t2);
+       a[3] ^= m & (a[3] ^ t3);
+
+#endif
+}
+
+/*
+ * Points in affine and Jacobian coordinates.
+ *
+ *  - In affine coordinates, the point-at-infinity cannot be encoded.
+ *  - Jacobian coordinates (X,Y,Z) correspond to affine (X/Z^2,Y/Z^3);
+ *    if Z = 0 then this is the point-at-infinity.
+ */
+typedef struct {
+       uint64_t x[4];
+       uint64_t y[4];
+} p256_affine;
+
+typedef struct {
+       uint64_t x[4];
+       uint64_t y[4];
+       uint64_t z[4];
+} p256_jacobian;
+
+/*
+ * Decode a point. The returned point is in Jacobian coordinates, but
+ * with z = 1. If the encoding is invalid, or encodes a point which is
+ * not on the curve, or encodes the point at infinity, then this function
+ * returns 0. Otherwise, 1 is returned.
+ *
+ * The buffer is assumed to have length exactly 65 bytes.
+ */
+static uint32_t
+point_decode(p256_jacobian *P, const unsigned char *buf)
+{
+       uint64_t x[4], y[4], t[4], x3[4], tt;
+       uint32_t r;
+
+       /*
+        * Header byte shall be 0x04.
+        */
+       r = EQ(buf[0], 0x04);
+
+       /*
+        * Decode X and Y coordinates, and convert them into
+        * Montgomery representation.
+        */
+       x[3] = br_dec64be(buf +  1);
+       x[2] = br_dec64be(buf +  9);
+       x[1] = br_dec64be(buf + 17);
+       x[0] = br_dec64be(buf + 25);
+       y[3] = br_dec64be(buf + 33);
+       y[2] = br_dec64be(buf + 41);
+       y[1] = br_dec64be(buf + 49);
+       y[0] = br_dec64be(buf + 57);
+       f256_tomonty(x, x);
+       f256_tomonty(y, y);
+
+       /*
+        * Verify y^2 = x^3 + A*x + B. In curve P-256, A = -3.
+        * Note that the Montgomery representation of 0 is 0. We must
+        * take care to apply the final reduction to make sure we have
+        * 0 and not p.
+        */
+       f256_montysquare(t, y);
+       f256_montysquare(x3, x);
+       f256_montymul(x3, x3, x);
+       f256_sub(t, t, x3);
+       f256_add(t, t, x);
+       f256_add(t, t, x);
+       f256_add(t, t, x);
+       f256_sub(t, t, P256_B_MONTY);
+       f256_final_reduce(t);
+       tt = t[0] | t[1] | t[2] | t[3];
+       r &= EQ((uint32_t)(tt | (tt >> 32)), 0);
+
+       /*
+        * Return the point in Jacobian coordinates (and Montgomery
+        * representation).
+        */
+       memcpy(P->x, x, sizeof x);
+       memcpy(P->y, y, sizeof y);
+       memcpy(P->z, F256_R, sizeof F256_R);
+       return r;
+}
+
+/*
+ * Final conversion for a point:
+ *  - The point is converted back to affine coordinates.
+ *  - Final reduction is performed.
+ *  - The point is encoded into the provided buffer.
+ *
+ * If the point is the point-at-infinity, all operations are performed,
+ * but the buffer contents are indeterminate, and 0 is returned. Otherwise,
+ * the encoded point is written in the buffer, and 1 is returned.
+ */
+static uint32_t
+point_encode(unsigned char *buf, const p256_jacobian *P)
+{
+       uint64_t t1[4], t2[4], z;
+
+       /* Set t1 = 1/z^2 and t2 = 1/z^3. */
+       f256_invert(t2, P->z);
+       f256_montysquare(t1, t2);
+       f256_montymul(t2, t2, t1);
+
+       /* Compute affine coordinates x (in t1) and y (in t2). */
+       f256_montymul(t1, P->x, t1);
+       f256_montymul(t2, P->y, t2);
+
+       /* Convert back from Montgomery representation, and finalize
+          reductions. */
+       f256_frommonty(t1, t1);
+       f256_frommonty(t2, t2);
+       f256_final_reduce(t1);
+       f256_final_reduce(t2);
+
+       /* Encode. */
+       buf[0] = 0x04;
+       br_enc64be(buf +  1, t1[3]);
+       br_enc64be(buf +  9, t1[2]);
+       br_enc64be(buf + 17, t1[1]);
+       br_enc64be(buf + 25, t1[0]);
+       br_enc64be(buf + 33, t2[3]);
+       br_enc64be(buf + 41, t2[2]);
+       br_enc64be(buf + 49, t2[1]);
+       br_enc64be(buf + 57, t2[0]);
+
+       /* Return success if and only if P->z != 0. */
+       z = P->z[0] | P->z[1] | P->z[2] | P->z[3];
+       return NEQ((uint32_t)(z | z >> 32), 0);
+}
+
+/*
+ * Point doubling in Jacobian coordinates: point P is doubled.
+ * Note: if the source point is the point-at-infinity, then the result is
+ * still the point-at-infinity, which is correct. Moreover, if the three
+ * coordinates were zero, then they still are zero in the returned value.
+ *
+ * (Note: this is true even without the final reduction: if the three
+ * coordinates are encoded as four words of value zero each, then the
+ * result will also have all-zero coordinate encodings, not the alternate
+ * encoding as the integer p.)
+ */
+static void
+p256_double(p256_jacobian *P)
+{
+       /*
+        * Doubling formulas are:
+        *
+        *   s = 4*x*y^2
+        *   m = 3*(x + z^2)*(x - z^2)
+        *   x' = m^2 - 2*s
+        *   y' = m*(s - x') - 8*y^4
+        *   z' = 2*y*z
+        *
+        * These formulas work for all points, including points of order 2
+        * and points at infinity:
+        *   - If y = 0 then z' = 0. But there is no such point in P-256
+        *     anyway.
+        *   - If z = 0 then z' = 0.
+        */
+       uint64_t t1[4], t2[4], t3[4], t4[4];
+
+       /*
+        * Compute z^2 in t1.
+        */
+       f256_montysquare(t1, P->z);
+
+       /*
+        * Compute x-z^2 in t2 and x+z^2 in t1.
+        */
+       f256_add(t2, P->x, t1);
+       f256_sub(t1, P->x, t1);
+
+       /*
+        * Compute 3*(x+z^2)*(x-z^2) in t1.
+        */
+       f256_montymul(t3, t1, t2);
+       f256_add(t1, t3, t3);
+       f256_add(t1, t3, t1);
+
+       /*
+        * Compute 4*x*y^2 (in t2) and 2*y^2 (in t3).
+        */
+       f256_montysquare(t3, P->y);
+       f256_add(t3, t3, t3);
+       f256_montymul(t2, P->x, t3);
+       f256_add(t2, t2, t2);
+
+       /*
+        * Compute x' = m^2 - 2*s.
+        */
+       f256_montysquare(P->x, t1);
+       f256_sub(P->x, P->x, t2);
+       f256_sub(P->x, P->x, t2);
+
+       /*
+        * Compute z' = 2*y*z.
+        */
+       f256_montymul(t4, P->y, P->z);
+       f256_add(P->z, t4, t4);
+
+       /*
+        * Compute y' = m*(s - x') - 8*y^4. Note that we already have
+        * 2*y^2 in t3.
+        */
+       f256_sub(t2, t2, P->x);
+       f256_montymul(P->y, t1, t2);
+       f256_montysquare(t4, t3);
+       f256_add(t4, t4, t4);
+       f256_sub(P->y, P->y, t4);
+}
+
+/*
+ * Point addition (Jacobian coordinates): P1 is replaced with P1+P2.
+ * This function computes the wrong result in the following cases:
+ *
+ *   - If P1 == 0 but P2 != 0
+ *   - If P1 != 0 but P2 == 0
+ *   - If P1 == P2
+ *
+ * In all three cases, P1 is set to the point at infinity.
+ *
+ * Returned value is 0 if one of the following occurs:
+ *
+ *   - P1 and P2 have the same Y coordinate.
+ *   - P1 == 0 and P2 == 0.
+ *   - The Y coordinate of one of the points is 0 and the other point is
+ *     the point at infinity.
+ *
+ * The third case cannot actually happen with valid points, since a point
+ * with Y == 0 is a point of order 2, and there is no point of order 2 on
+ * curve P-256.
+ *
+ * Therefore, assuming that P1 != 0 and P2 != 0 on input, then the caller
+ * can apply the following:
+ *
+ *   - If the result is not the point at infinity, then it is correct.
+ *   - Otherwise, if the returned value is 1, then this is a case of
+ *     P1+P2 == 0, so the result is indeed the point at infinity.
+ *   - Otherwise, P1 == P2, so a "double" operation should have been
+ *     performed.
+ *
+ * Note that you can get a returned value of 0 with a correct result,
+ * e.g. if P1 and P2 have the same Y coordinate, but distinct X coordinates.
+ */
+static uint32_t
+p256_add(p256_jacobian *P1, const p256_jacobian *P2)
+{
+       /*
+        * Addtions formulas are:
+        *
+        *   u1 = x1 * z2^2
+        *   u2 = x2 * z1^2
+        *   s1 = y1 * z2^3
+        *   s2 = y2 * z1^3
+        *   h = u2 - u1
+        *   r = s2 - s1
+        *   x3 = r^2 - h^3 - 2 * u1 * h^2
+        *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
+        *   z3 = h * z1 * z2
+        */
+       uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
+       uint32_t ret;
+
+       /*
+        * Compute u1 = x1*z2^2 (in t1) and s1 = y1*z2^3 (in t3).
+        */
+       f256_montysquare(t3, P2->z);
+       f256_montymul(t1, P1->x, t3);
+       f256_montymul(t4, P2->z, t3);
+       f256_montymul(t3, P1->y, t4);
+
+       /*
+        * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
+        */
+       f256_montysquare(t4, P1->z);
+       f256_montymul(t2, P2->x, t4);
+       f256_montymul(t5, P1->z, t4);
+       f256_montymul(t4, P2->y, t5);
+
+       /*
+        * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
+        * We need to test whether r is zero, so we will do some extra
+        * reduce.
+        */
+       f256_sub(t2, t2, t1);
+       f256_sub(t4, t4, t3);
+       f256_final_reduce(t4);
+       tt = t4[0] | t4[1] | t4[2] | t4[3];
+       ret = (uint32_t)(tt | (tt >> 32));
+       ret = (ret | -ret) >> 31;
+
+       /*
+        * Compute u1*h^2 (in t6) and h^3 (in t5);
+        */
+       f256_montysquare(t7, t2);
+       f256_montymul(t6, t1, t7);
+       f256_montymul(t5, t7, t2);
+
+       /*
+        * Compute x3 = r^2 - h^3 - 2*u1*h^2.
+        */
+       f256_montysquare(P1->x, t4);
+       f256_sub(P1->x, P1->x, t5);
+       f256_sub(P1->x, P1->x, t6);
+       f256_sub(P1->x, P1->x, t6);
+
+       /*
+        * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
+        */
+       f256_sub(t6, t6, P1->x);
+       f256_montymul(P1->y, t4, t6);
+       f256_montymul(t1, t5, t3);
+       f256_sub(P1->y, P1->y, t1);
+
+       /*
+        * Compute z3 = h*z1*z2.
+        */
+       f256_montymul(t1, P1->z, P2->z);
+       f256_montymul(P1->z, t1, t2);
+
+       return ret;
+}
+
+/*
+ * Point addition (mixed coordinates): P1 is replaced with P1+P2.
+ * This is a specialised function for the case when P2 is a non-zero point
+ * in affine coordinates.
+ *
+ * This function computes the wrong result in the following cases:
+ *
+ *   - If P1 == 0
+ *   - If P1 == P2
+ *
+ * In both cases, P1 is set to the point at infinity.
+ *
+ * Returned value is 0 if one of the following occurs:
+ *
+ *   - P1 and P2 have the same Y (affine) coordinate.
+ *   - The Y coordinate of P2 is 0 and P1 is the point at infinity.
+ *
+ * The second case cannot actually happen with valid points, since a point
+ * with Y == 0 is a point of order 2, and there is no point of order 2 on
+ * curve P-256.
+ *
+ * Therefore, assuming that P1 != 0 on input, then the caller
+ * can apply the following:
+ *
+ *   - If the result is not the point at infinity, then it is correct.
+ *   - Otherwise, if the returned value is 1, then this is a case of
+ *     P1+P2 == 0, so the result is indeed the point at infinity.
+ *   - Otherwise, P1 == P2, so a "double" operation should have been
+ *     performed.
+ *
+ * Again, a value of 0 may be returned in some cases where the addition
+ * result is correct.
+ */
+static uint32_t
+p256_add_mixed(p256_jacobian *P1, const p256_affine *P2)
+{
+       /*
+        * Addtions formulas are:
+        *
+        *   u1 = x1
+        *   u2 = x2 * z1^2
+        *   s1 = y1
+        *   s2 = y2 * z1^3
+        *   h = u2 - u1
+        *   r = s2 - s1
+        *   x3 = r^2 - h^3 - 2 * u1 * h^2
+        *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
+        *   z3 = h * z1
+        */
+       uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt;
+       uint32_t ret;
+
+       /*
+        * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
+        */
+       memcpy(t1, P1->x, sizeof t1);
+       memcpy(t3, P1->y, sizeof t3);
+
+       /*
+        * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
+        */
+       f256_montysquare(t4, P1->z);
+       f256_montymul(t2, P2->x, t4);
+       f256_montymul(t5, P1->z, t4);
+       f256_montymul(t4, P2->y, t5);
+
+       /*
+        * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
+        * We need to test whether r is zero, so we will do some extra
+        * reduce.
+        */
+       f256_sub(t2, t2, t1);
+       f256_sub(t4, t4, t3);
+       f256_final_reduce(t4);
+       tt = t4[0] | t4[1] | t4[2] | t4[3];
+       ret = (uint32_t)(tt | (tt >> 32));
+       ret = (ret | -ret) >> 31;
+
+       /*
+        * Compute u1*h^2 (in t6) and h^3 (in t5);
+        */
+       f256_montysquare(t7, t2);
+       f256_montymul(t6, t1, t7);
+       f256_montymul(t5, t7, t2);
+
+       /*
+        * Compute x3 = r^2 - h^3 - 2*u1*h^2.
+        */
+       f256_montysquare(P1->x, t4);
+       f256_sub(P1->x, P1->x, t5);
+       f256_sub(P1->x, P1->x, t6);
+       f256_sub(P1->x, P1->x, t6);
+
+       /*
+        * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
+        */
+       f256_sub(t6, t6, P1->x);
+       f256_montymul(P1->y, t4, t6);
+       f256_montymul(t1, t5, t3);
+       f256_sub(P1->y, P1->y, t1);
+
+       /*
+        * Compute z3 = h*z1*z2.
+        */
+       f256_montymul(P1->z, P1->z, t2);
+
+       return ret;
+}
+
+#if 0
+/* unused */
+/*
+ * Point addition (mixed coordinates, complete): P1 is replaced with P1+P2.
+ * This is a specialised function for the case when P2 is a non-zero point
+ * in affine coordinates.
+ *
+ * This function returns the correct result in all cases.
+ */
+static uint32_t
+p256_add_complete_mixed(p256_jacobian *P1, const p256_affine *P2)
+{
+       /*
+        * Addtions formulas, in the general case, are:
+        *
+        *   u1 = x1
+        *   u2 = x2 * z1^2
+        *   s1 = y1
+        *   s2 = y2 * z1^3
+        *   h = u2 - u1
+        *   r = s2 - s1
+        *   x3 = r^2 - h^3 - 2 * u1 * h^2
+        *   y3 = r * (u1 * h^2 - x3) - s1 * h^3
+        *   z3 = h * z1
+        *
+        * These formulas mishandle the two following cases:
+        *
+        *  - If P1 is the point-at-infinity (z1 = 0), then z3 is
+        *    incorrectly set to 0.
+        *
+        *  - If P1 = P2, then u1 = u2 and s1 = s2, and x3, y3 and z3
+        *    are all set to 0.
+        *
+        * However, if P1 + P2 = 0, then u1 = u2 but s1 != s2, and then
+        * we correctly get z3 = 0 (the point-at-infinity).
+        *
+        * To fix the case P1 = 0, we perform at the end a copy of P2
+        * over P1, conditional to z1 = 0.
+        *
+        * For P1 = P2: in that case, both h and r are set to 0, and
+        * we get x3, y3 and z3 equal to 0. We can test for that
+        * occurrence to make a mask which will be all-one if P1 = P2,
+        * or all-zero otherwise; then we can compute the double of P2
+        * and add it, combined with the mask, to (x3,y3,z3).
+        *
+        * Using the doubling formulas in p256_double() on (x2,y2),
+        * simplifying since P2 is affine (i.e. z2 = 1, implicitly),
+        * we get:
+        *   s = 4*x2*y2^2
+        *   m = 3*(x2 + 1)*(x2 - 1)
+        *   x' = m^2 - 2*s
+        *   y' = m*(s - x') - 8*y2^4
+        *   z' = 2*y2
+        * which requires only 6 multiplications. Added to the 11
+        * multiplications of the normal mixed addition in Jacobian
+        * coordinates, we get a cost of 17 multiplications in total.
+        */
+       uint64_t t1[4], t2[4], t3[4], t4[4], t5[4], t6[4], t7[4], tt, zz;
+       int i;
+
+       /*
+        * Set zz to -1 if P1 is the point at infinity, 0 otherwise.
+        */
+       zz = P1->z[0] | P1->z[1] | P1->z[2] | P1->z[3];
+       zz = ((zz | -zz) >> 63) - (uint64_t)1;
+
+       /*
+        * Compute u1 = x1 (in t1) and s1 = y1 (in t3).
+        */
+       memcpy(t1, P1->x, sizeof t1);
+       memcpy(t3, P1->y, sizeof t3);
+
+       /*
+        * Compute u2 = x2*z1^2 (in t2) and s2 = y2*z1^3 (in t4).
+        */
+       f256_montysquare(t4, P1->z);
+       f256_montymul(t2, P2->x, t4);
+       f256_montymul(t5, P1->z, t4);
+       f256_montymul(t4, P2->y, t5);
+
+       /*
+        * Compute h = h2 - u1 (in t2) and r = s2 - s1 (in t4).
+        * reduce.
+        */
+       f256_sub(t2, t2, t1);
+       f256_sub(t4, t4, t3);
+
+       /*
+        * If both h = 0 and r = 0, then P1 = P2, and we want to set
+        * the mask tt to -1; otherwise, the mask will be 0.
+        */
+       f256_final_reduce(t2);
+       f256_final_reduce(t4);
+       tt = t2[0] | t2[1] | t2[2] | t2[3] | t4[0] | t4[1] | t4[2] | t4[3];
+       tt = ((tt | -tt) >> 63) - (uint64_t)1;
+
+       /*
+        * Compute u1*h^2 (in t6) and h^3 (in t5);
+        */
+       f256_montysquare(t7, t2);
+       f256_montymul(t6, t1, t7);
+       f256_montymul(t5, t7, t2);
+
+       /*
+        * Compute x3 = r^2 - h^3 - 2*u1*h^2.
+        */
+       f256_montysquare(P1->x, t4);
+       f256_sub(P1->x, P1->x, t5);
+       f256_sub(P1->x, P1->x, t6);
+       f256_sub(P1->x, P1->x, t6);
+
+       /*
+        * Compute y3 = r*(u1*h^2 - x3) - s1*h^3.
+        */
+       f256_sub(t6, t6, P1->x);
+       f256_montymul(P1->y, t4, t6);
+       f256_montymul(t1, t5, t3);
+       f256_sub(P1->y, P1->y, t1);
+
+       /*
+        * Compute z3 = h*z1.
+        */
+       f256_montymul(P1->z, P1->z, t2);
+
+       /*
+        * The "double" result, in case P1 = P2.
+        */
+
+       /*
+        * Compute z' = 2*y2 (in t1).
+        */
+       f256_add(t1, P2->y, P2->y);
+
+       /*
+        * Compute 2*(y2^2) (in t2) and s = 4*x2*(y2^2) (in t3).
+        */
+       f256_montysquare(t2, P2->y);
+       f256_add(t2, t2, t2);
+       f256_add(t3, t2, t2);
+       f256_montymul(t3, P2->x, t3);
+
+       /*
+        * Compute m = 3*(x2^2 - 1) (in t4).
+        */
+       f256_montysquare(t4, P2->x);
+       f256_sub(t4, t4, F256_R);
+       f256_add(t5, t4, t4);
+       f256_add(t4, t4, t5);
+
+       /*
+        * Compute x' = m^2 - 2*s (in t5).
+        */
+       f256_montysquare(t5, t4);
+       f256_sub(t5, t3);
+       f256_sub(t5, t3);
+
+       /*
+        * Compute y' = m*(s - x') - 8*y2^4 (in t6).
+        */
+       f256_sub(t6, t3, t5);
+       f256_montymul(t6, t6, t4);
+       f256_montysquare(t7, t2);
+       f256_sub(t6, t6, t7);
+       f256_sub(t6, t6, t7);
+
+       /*
+        * We now have the alternate (doubling) coordinates in (t5,t6,t1).
+        * We combine them with (x3,y3,z3).
+        */
+       for (i = 0; i < 4; i ++) {
+               P1->x[i] |= tt & t5[i];
+               P1->y[i] |= tt & t6[i];
+               P1->z[i] |= tt & t1[i];
+       }
+
+       /*
+        * If P1 = 0, then we get z3 = 0 (which is invalid); if z1 is 0,
+        * then we want to replace the result with a copy of P2. The
+        * test on z1 was done at the start, in the zz mask.
+        */
+       for (i = 0; i < 4; i ++) {
+               P1->x[i] ^= zz & (P1->x[i] ^ P2->x[i]);
+               P1->y[i] ^= zz & (P1->y[i] ^ P2->y[i]);
+               P1->z[i] ^= zz & (P1->z[i] ^ F256_R[i]);
+       }
+}
+#endif
+
+/*
+ * Inner function for computing a point multiplication. A window is
+ * provided, with points 1*P to 15*P in affine coordinates.
+ *
+ * Assumptions:
+ *  - All provided points are valid points on the curve.
+ *  - Multiplier is non-zero, and smaller than the curve order.
+ *  - Everything is in Montgomery representation.
+ */
+static void
+point_mul_inner(p256_jacobian *R, const p256_affine *W,
+       const unsigned char *k, size_t klen)
+{
+       p256_jacobian Q;
+       uint32_t qz;
+
+       memset(&Q, 0, sizeof Q);
+       qz = 1;
+       while (klen -- > 0) {
+               int i;
+               unsigned bk;
+
+               bk = *k ++;
+               for (i = 0; i < 2; i ++) {
+                       uint32_t bits;
+                       uint32_t bnz;
+                       p256_affine T;
+                       p256_jacobian U;
+                       uint32_t n;
+                       int j;
+                       uint64_t m;
+
+                       p256_double(&Q);
+                       p256_double(&Q);
+                       p256_double(&Q);
+                       p256_double(&Q);
+                       bits = (bk >> 4) & 0x0F;
+                       bnz = NEQ(bits, 0);
+
+                       /*
+                        * Lookup point in window. If the bits are 0,
+                        * we get something invalid, which is not a
+                        * problem because we will use it only if the
+                        * bits are non-zero.
+                        */
+                       memset(&T, 0, sizeof T);
+                       for (n = 0; n < 15; n ++) {
+                               m = -(uint64_t)EQ(bits, n + 1);
+                               T.x[0] |= m & W[n].x[0];
+                               T.x[1] |= m & W[n].x[1];
+                               T.x[2] |= m & W[n].x[2];
+                               T.x[3] |= m & W[n].x[3];
+                               T.y[0] |= m & W[n].y[0];
+                               T.y[1] |= m & W[n].y[1];
+                               T.y[2] |= m & W[n].y[2];
+                               T.y[3] |= m & W[n].y[3];
+                       }
+
+                       U = Q;
+                       p256_add_mixed(&U, &T);
+
+                       /*
+                        * If qz is still 1, then Q was all-zeros, and this
+                        * is conserved through p256_double().
+                        */
+                       m = -(uint64_t)(bnz & qz);
+                       for (j = 0; j < 4; j ++) {
+                               Q.x[j] |= m & T.x[j];
+                               Q.y[j] |= m & T.y[j];
+                               Q.z[j] |= m & F256_R[j];
+                       }
+                       CCOPY(bnz & ~qz, &Q, &U, sizeof Q);
+                       qz &= ~bnz;
+                       bk <<= 4;
+               }
+       }
+       *R = Q;
+}
+
+/*
+ * Convert a window from Jacobian to affine coordinates. A single
+ * field inversion is used. This function works for windows up to
+ * 32 elements.
+ *
+ * The destination array (aff[]) and the source array (jac[]) may
+ * overlap, provided that the start of aff[] is not after the start of
+ * jac[]. Even if the arrays do _not_ overlap, the source array is
+ * modified.
+ */
+static void
+window_to_affine(p256_affine *aff, p256_jacobian *jac, int num)
+{
+       /*
+        * Convert the window points to affine coordinates. We use the
+        * following trick to mutualize the inversion computation: if
+        * we have z1, z2, z3, and z4, and want to inverse all of them,
+        * we compute u = 1/(z1*z2*z3*z4), and then we have:
+        *   1/z1 = u*z2*z3*z4
+        *   1/z2 = u*z1*z3*z4
+        *   1/z3 = u*z1*z2*z4
+        *   1/z4 = u*z1*z2*z3
+        *
+        * The partial products are computed recursively:
+        *
+        *  - on input (z_1,z_2), return (z_2,z_1) and z_1*z_2
+        *  - on input (z_1,z_2,... z_n):
+        *       recurse on (z_1,z_2,... z_(n/2)) -> r1 and m1
+        *       recurse on (z_(n/2+1),z_(n/2+2)... z_n) -> r2 and m2
+        *       multiply elements of r1 by m2 -> s1
+        *       multiply elements of r2 by m1 -> s2
+        *       return r1||r2 and m1*m2
+        *
+        * In the example below, we suppose that we have 14 elements.
+        * Let z1, z2,... zE be the 14 values to invert (index noted in
+        * hexadecimal, starting at 1).
+        *
+        *  - Depth 1:
+        *      swap(z1, z2); z12 = z1*z2
+        *      swap(z3, z4); z34 = z3*z4
+        *      swap(z5, z6); z56 = z5*z6
+        *      swap(z7, z8); z78 = z7*z8
+        *      swap(z9, zA); z9A = z9*zA
+        *      swap(zB, zC); zBC = zB*zC
+        *      swap(zD, zE); zDE = zD*zE
+        *
+        *  - Depth 2:
+        *      z1 <- z1*z34, z2 <- z2*z34, z3 <- z3*z12, z4 <- z4*z12
+        *      z1234 = z12*z34
+        *      z5 <- z5*z78, z6 <- z6*z78, z7 <- z7*z56, z8 <- z8*z56
+        *      z5678 = z56*z78
+        *      z9 <- z9*zBC, zA <- zA*zBC, zB <- zB*z9A, zC <- zC*z9A
+        *      z9ABC = z9A*zBC
+        *
+        *  - Depth 3:
+        *      z1 <- z1*z5678, z2 <- z2*z5678, z3 <- z3*z5678, z4 <- z4*z5678
+        *      z5 <- z5*z1234, z6 <- z6*z1234, z7 <- z7*z1234, z8 <- z8*z1234
+        *      z12345678 = z1234*z5678
+        *      z9 <- z9*zDE, zA <- zA*zDE, zB <- zB*zDE, zC <- zC*zDE
+        *      zD <- zD*z9ABC, zE*z9ABC
+        *      z9ABCDE = z9ABC*zDE
+        *
+        *  - Depth 4:
+        *      multiply z1..z8 by z9ABCDE
+        *      multiply z9..zE by z12345678
+        *      final z = z12345678*z9ABCDE
+        */
+
+       uint64_t z[16][4];
+       int i, k, s;
+#define zt   (z[15])
+#define zu   (z[14])
+#define zv   (z[13])
+
+       /*
+        * First recursion step (pairwise swapping and multiplication).
+        * If there is an odd number of elements, then we "invent" an
+        * extra one with coordinate Z = 1 (in Montgomery representation).
+        */
+       for (i = 0; (i + 1) < num; i += 2) {
+               memcpy(zt, jac[i].z, sizeof zt);
+               memcpy(jac[i].z, jac[i + 1].z, sizeof zt);
+               memcpy(jac[i + 1].z, zt, sizeof zt);
+               f256_montymul(z[i >> 1], jac[i].z, jac[i + 1].z);
+       }
+       if ((num & 1) != 0) {
+               memcpy(z[num >> 1], jac[num - 1].z, sizeof zt);
+               memcpy(jac[num - 1].z, F256_R, sizeof F256_R);
+       }
+
+       /*
+        * Perform further recursion steps. At the entry of each step,
+        * the process has been done for groups of 's' points. The
+        * integer k is the log2 of s.
+        */
+       for (k = 1, s = 2; s < num; k ++, s <<= 1) {
+               int n;
+
+               for (i = 0; i < num; i ++) {
+                       f256_montymul(jac[i].z, jac[i].z, z[(i >> k) ^ 1]);
+               }
+               n = (num + s - 1) >> k;
+               for (i = 0; i < (n >> 1); i ++) {
+                       f256_montymul(z[i], z[i << 1], z[(i << 1) + 1]);
+               }
+               if ((n & 1) != 0) {
+                       memmove(z[n >> 1], z[n], sizeof zt);
+               }
+       }
+
+       /*
+        * Invert the final result, and convert all points.
+        */
+       f256_invert(zt, z[0]);
+       for (i = 0; i < num; i ++) {
+               f256_montymul(zv, jac[i].z, zt);
+               f256_montysquare(zu, zv);
+               f256_montymul(zv, zv, zu);
+               f256_montymul(aff[i].x, jac[i].x, zu);
+               f256_montymul(aff[i].y, jac[i].y, zv);
+       }
+}
+
+/*
+ * Multiply the provided point by an integer.
+ * Assumptions:
+ *  - Source point is a valid curve point.
+ *  - Source point is not the point-at-infinity.
+ *  - Integer is not 0, and is lower than the curve order.
+ * If these conditions are not met, then the result is indeterminate
+ * (but the process is still constant-time).
+ */
+static void
+p256_mul(p256_jacobian *P, const unsigned char *k, size_t klen)
+{
+       union {
+               p256_affine aff[15];
+               p256_jacobian jac[15];
+       } window;
+       int i;
+
+       /*
+        * Compute window, in Jacobian coordinates.
+        */
+       window.jac[0] = *P;
+       for (i = 2; i < 16; i ++) {
+               window.jac[i - 1] = window.jac[(i >> 1) - 1];
+               if ((i & 1) == 0) {
+                       p256_double(&window.jac[i - 1]);
+               } else {
+                       p256_add(&window.jac[i - 1], &window.jac[i >> 1]);
+               }
+       }
+
+       /*
+        * Convert the window points to affine coordinates. Point
+        * window[0] is the source point, already in affine coordinates.
+        */
+       window_to_affine(window.aff, window.jac, 15);
+
+       /*
+        * Perform point multiplication.
+        */
+       point_mul_inner(P, window.aff, k, klen);
+}
+
+/*
+ * Precomputed window for the conventional generator: P256_Gwin[n]
+ * contains (n+1)*G (affine coordinates, in Montgomery representation).
+ */
+static const p256_affine P256_Gwin[] = {
+       {
+               { 0x79E730D418A9143C, 0x75BA95FC5FEDB601,
+                 0x79FB732B77622510, 0x18905F76A53755C6 },
+               { 0xDDF25357CE95560A, 0x8B4AB8E4BA19E45C,
+                 0xD2E88688DD21F325, 0x8571FF1825885D85 }
+       },
+       {
+               { 0x850046D410DDD64D, 0xAA6AE3C1A433827D,
+                 0x732205038D1490D9, 0xF6BB32E43DCF3A3B },
+               { 0x2F3648D361BEE1A5, 0x152CD7CBEB236FF8,
+                 0x19A8FB0E92042DBE, 0x78C577510A5B8A3B }
+       },
+       {
+               { 0xFFAC3F904EEBC127, 0xB027F84A087D81FB,
+                 0x66AD77DD87CBBC98, 0x26936A3FB6FF747E },
+               { 0xB04C5C1FC983A7EB, 0x583E47AD0861FE1A,
+                 0x788208311A2EE98E, 0xD5F06A29E587CC07 }
+       },
+       {
+               { 0x74B0B50D46918DCC, 0x4650A6EDC623C173,
+                 0x0CDAACACE8100AF2, 0x577362F541B0176B },
+               { 0x2D96F24CE4CBABA6, 0x17628471FAD6F447,
+                 0x6B6C36DEE5DDD22E, 0x84B14C394C5AB863 }
+       },
+       {
+               { 0xBE1B8AAEC45C61F5, 0x90EC649A94B9537D,
+                 0x941CB5AAD076C20C, 0xC9079605890523C8 },
+               { 0xEB309B4AE7BA4F10, 0x73C568EFE5EB882B,
+                 0x3540A9877E7A1F68, 0x73A076BB2DD1E916 }
+       },
+       {
+               { 0x403947373E77664A, 0x55AE744F346CEE3E,
+                 0xD50A961A5B17A3AD, 0x13074B5954213673 },
+               { 0x93D36220D377E44B, 0x299C2B53ADFF14B5,
+                 0xF424D44CEF639F11, 0xA4C9916D4A07F75F }
+       },
+       {
+               { 0x0746354EA0173B4F, 0x2BD20213D23C00F7,
+                 0xF43EAAB50C23BB08, 0x13BA5119C3123E03 },
+               { 0x2847D0303F5B9D4D, 0x6742F2F25DA67BDD,
+                 0xEF933BDC77C94195, 0xEAEDD9156E240867 }
+       },
+       {
+               { 0x27F14CD19499A78F, 0x462AB5C56F9B3455,
+                 0x8F90F02AF02CFC6B, 0xB763891EB265230D },
+               { 0xF59DA3A9532D4977, 0x21E3327DCF9EBA15,
+                 0x123C7B84BE60BBF0, 0x56EC12F27706DF76 }
+       },
+       {
+               { 0x75C96E8F264E20E8, 0xABE6BFED59A7A841,
+                 0x2CC09C0444C8EB00, 0xE05B3080F0C4E16B },
+               { 0x1EB7777AA45F3314, 0x56AF7BEDCE5D45E3,
+                 0x2B6E019A88B12F1A, 0x086659CDFD835F9B }
+       },
+       {
+               { 0x2C18DBD19DC21EC8, 0x98F9868A0FCF8139,
+                 0x737D2CD648250B49, 0xCC61C94724B3428F },
+               { 0x0C2B407880DD9E76, 0xC43A8991383FBE08,
+                 0x5F7D2D65779BE5D2, 0x78719A54EB3B4AB5 }
+       },
+       {
+               { 0xEA7D260A6245E404, 0x9DE407956E7FDFE0,
+                 0x1FF3A4158DAC1AB5, 0x3E7090F1649C9073 },
+               { 0x1A7685612B944E88, 0x250F939EE57F61C8,
+                 0x0C0DAA891EAD643D, 0x68930023E125B88E }
+       },
+       {
+               { 0x04B71AA7D2697768, 0xABDEDEF5CA345A33,
+                 0x2409D29DEE37385E, 0x4EE1DF77CB83E156 },
+               { 0x0CAC12D91CBB5B43, 0x170ED2F6CA895637,
+                 0x28228CFA8ADE6D66, 0x7FF57C9553238ACA }
+       },
+       {
+               { 0xCCC425634B2ED709, 0x0E356769856FD30D,
+                 0xBCBCD43F559E9811, 0x738477AC5395B759 },
+               { 0x35752B90C00EE17F, 0x68748390742ED2E3,
+                 0x7CD06422BD1F5BC1, 0xFBC08769C9E7B797 }
+       },
+       {
+               { 0xA242A35BB0CF664A, 0x126E48F77F9707E3,
+                 0x1717BF54C6832660, 0xFAAE7332FD12C72E },
+               { 0x27B52DB7995D586B, 0xBE29569E832237C2,
+                 0xE8E4193E2A65E7DB, 0x152706DC2EAA1BBB }
+       },
+       {
+               { 0x72BCD8B7BC60055B, 0x03CC23EE56E27E4B,
+                 0xEE337424E4819370, 0xE2AA0E430AD3DA09 },
+               { 0x40B8524F6383C45D, 0xD766355442A41B25,
+                 0x64EFA6DE778A4797, 0x2042170A7079ADF4 }
+       }
+};
+
+/*
+ * Multiply the conventional generator of the curve by the provided
+ * integer. Return is written in *P.
+ *
+ * Assumptions:
+ *  - Integer is not 0, and is lower than the curve order.
+ * If this conditions is not met, then the result is indeterminate
+ * (but the process is still constant-time).
+ */
+static void
+p256_mulgen(p256_jacobian *P, const unsigned char *k, size_t klen)
+{
+       point_mul_inner(P, P256_Gwin, k, klen);
+}
+
+/*
+ * Return 1 if all of the following hold:
+ *  - klen <= 32
+ *  - k != 0
+ *  - k is lower than the curve order
+ * Otherwise, return 0.
+ *
+ * Constant-time behaviour: only klen may be observable.
+ */
+static uint32_t
+check_scalar(const unsigned char *k, size_t klen)
+{
+       uint32_t z;
+       int32_t c;
+       size_t u;
+
+       if (klen > 32) {
+               return 0;
+       }
+       z = 0;
+       for (u = 0; u < klen; u ++) {
+               z |= k[u];
+       }
+       if (klen == 32) {
+               c = 0;
+               for (u = 0; u < klen; u ++) {
+                       c |= -(int32_t)EQ0(c) & CMP(k[u], P256_N[u]);
+               }
+       } else {
+               c = -1;
+       }
+       return NEQ(z, 0) & LT0(c);
+}
+
+static uint32_t
+api_mul(unsigned char *G, size_t Glen,
+       const unsigned char *k, size_t klen, int curve)
+{
+       uint32_t r;
+       p256_jacobian P;
+
+       (void)curve;
+       if (Glen != 65) {
+               return 0;
+       }
+       r = check_scalar(k, klen);
+       r &= point_decode(&P, G);
+       p256_mul(&P, k, klen);
+       r &= point_encode(G, &P);
+       return r;
+}
+
+static size_t
+api_mulgen(unsigned char *R,
+       const unsigned char *k, size_t klen, int curve)
+{
+       p256_jacobian P;
+
+       (void)curve;
+       p256_mulgen(&P, k, klen);
+       point_encode(R, &P);
+       return 65;
+}
+
+static uint32_t
+api_muladd(unsigned char *A, const unsigned char *B, size_t len,
+       const unsigned char *x, size_t xlen,
+       const unsigned char *y, size_t ylen, int curve)
+{
+       /*
+        * We might want to use Shamir's trick here: make a composite
+        * window of u*P+v*Q points, to merge the two doubling-ladders
+        * into one. This, however, has some complications:
+        *
+        *  - During the computation, we may hit the point-at-infinity.
+        *    Thus, we would need p256_add_complete_mixed() (complete
+        *    formulas for point addition), with a higher cost (17 muls
+        *    instead of 11).
+        *
+        *  - A 4-bit window would be too large, since it would involve
+        *    16*16-1 = 255 points. For the same window size as in the
+        *    p256_mul() case, we would need to reduce the window size
+        *    to 2 bits, and thus perform twice as many non-doubling
+        *    point additions.
+        *
+        *  - The window may itself contain the point-at-infinity, and
+        *    thus cannot be in all generality be made of affine points.
+        *    Instead, we would need to make it a window of points in
+        *    Jacobian coordinates. Even p256_add_complete_mixed() would
+        *    be inappropriate.
+        *
+        * For these reasons, the code below performs two separate
+        * point multiplications, then computes the final point addition
+        * (which is both a "normal" addition, and a doubling, to handle
+        * all cases).
+        */
+
+       p256_jacobian P, Q;
+       uint32_t r, t, s;
+       uint64_t z;
+
+       (void)curve;
+       if (len != 65) {
+               return 0;
+       }
+       r = point_decode(&P, A);
+       p256_mul(&P, x, xlen);
+       if (B == NULL) {
+               p256_mulgen(&Q, y, ylen);
+       } else {
+               r &= point_decode(&Q, B);
+               p256_mul(&Q, y, ylen);
+       }
+
+       /*
+        * The final addition may fail in case both points are equal.
+        */
+       t = p256_add(&P, &Q);
+       f256_final_reduce(P.z);
+       z = P.z[0] | P.z[1] | P.z[2] | P.z[3];
+       s = EQ((uint32_t)(z | (z >> 32)), 0);
+       p256_double(&Q);
+
+       /*
+        * If s is 1 then either P+Q = 0 (t = 1) or P = Q (t = 0). So we
+        * have the following:
+        *
+        *   s = 0, t = 0   return P (normal addition)
+        *   s = 0, t = 1   return P (normal addition)
+        *   s = 1, t = 0   return Q (a 'double' case)
+        *   s = 1, t = 1   report an error (P+Q = 0)
+        */
+       CCOPY(s & ~t, &P, &Q, sizeof Q);
+       point_encode(A, &P);
+       r &= ~(s & t);
+       return r;
+}
+
+/* see bearssl_ec.h */
+const br_ec_impl br_ec_p256_m64 = {
+       (uint32_t)0x00800000,
+       &api_generator,
+       &api_order,
+       &api_xoff,
+       &api_mul,
+       &api_mulgen,
+       &api_muladd
+};
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_p256_m64_get(void)
+{
+       return &br_ec_p256_m64;
+}
+
+#else
+
+/* see bearssl_ec.h */
+const br_ec_impl *
+br_ec_p256_m64_get(void)
+{
+       return 0;
+}
+
+#endif
index 99c68d9..ae1d170 100644 (file)
@@ -8569,6 +8569,40 @@ test_EC_p256_m31(void)
                (uint32_t)1 << BR_EC_secp256r1);
 }
 
+static void
+test_EC_p256_m62(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_p256_m62_get();
+       if (ec != NULL) {
+               test_EC_KAT("EC_p256_m62", ec,
+                       (uint32_t)1 << BR_EC_secp256r1);
+               test_EC_keygen("EC_p256_m62", ec,
+                       (uint32_t)1 << BR_EC_secp256r1);
+       } else {
+               printf("Test EC_p256_m62: UNAVAILABLE\n");
+               printf("Test EC_p256_m62 keygen: UNAVAILABLE\n");
+       }
+}
+
+static void
+test_EC_p256_m64(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_p256_m64_get();
+       if (ec != NULL) {
+               test_EC_KAT("EC_p256_m64", ec,
+                       (uint32_t)1 << BR_EC_secp256r1);
+               test_EC_keygen("EC_p256_m64", ec,
+                       (uint32_t)1 << BR_EC_secp256r1);
+       } else {
+               printf("Test EC_p256_m64: UNAVAILABLE\n");
+               printf("Test EC_p256_m64 keygen: UNAVAILABLE\n");
+       }
+}
+
 const struct {
        const char *scalar_le;
        const char *u_in;
@@ -8714,6 +8748,22 @@ test_EC_c25519_m62(void)
        }
 }
 
+static void
+test_EC_c25519_m64(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_c25519_m64_get();
+       if (ec != NULL) {
+               test_EC_c25519("EC_c25519_m64", ec);
+               test_EC_keygen("EC_c25519_m64", ec,
+                       (uint32_t)1 << BR_EC_curve25519);
+       } else {
+               printf("Test EC_c25519_m64: UNAVAILABLE\n");
+               printf("Test EC_c25519_m64 keygen: UNAVAILABLE\n");
+       }
+}
+
 static const unsigned char EC_P256_PUB_POINT[] = {
        0x04, 0x60, 0xFE, 0xD4, 0xBA, 0x25, 0x5A, 0x9D,
        0x31, 0xC9, 0x61, 0xEB, 0x74, 0xC6, 0x35, 0x6D,
@@ -9381,11 +9431,14 @@ static const struct {
        STU(EC_prime_i31),
        STU(EC_p256_m15),
        STU(EC_p256_m31),
+       STU(EC_p256_m62),
+       STU(EC_p256_m64),
        STU(EC_c25519_i15),
        STU(EC_c25519_i31),
        STU(EC_c25519_m15),
        STU(EC_c25519_m31),
        STU(EC_c25519_m62),
+       STU(EC_c25519_m64),
        STU(ECDSA_i15),
        STU(ECDSA_i31),
        STU(modpow_i31),
index 81f3e94..eb1b964 100644 (file)
@@ -1038,6 +1038,32 @@ test_speed_ec_p256_m31(void)
                &br_ec_p256_m31, &br_secp256r1);
 }
 
+static void
+test_speed_ec_p256_m62(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_p256_m62_get();
+       if (ec != NULL) {
+               test_speed_ec_inner("EC p256_m62", ec, &br_secp256r1);
+       } else {
+               printf("%-30s UNAVAILABLE\n", "EC p256_m62");
+       }
+}
+
+static void
+test_speed_ec_p256_m64(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_p256_m64_get();
+       if (ec != NULL) {
+               test_speed_ec_inner("EC p256_m64", ec, &br_secp256r1);
+       } else {
+               printf("%-30s UNAVAILABLE\n", "EC p256_m64");
+       }
+}
+
 static void
 test_speed_ec_prime_i15(void)
 {
@@ -1101,6 +1127,19 @@ test_speed_ec_c25519_m62(void)
        }
 }
 
+static void
+test_speed_ec_c25519_m64(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_c25519_m64_get();
+       if (ec != NULL) {
+               test_speed_ec_inner("EC c25519_m64", ec, &br_curve25519);
+       } else {
+               printf("%-30s UNAVAILABLE\n", "EC c25519_m64");
+       }
+}
+
 static void
 test_speed_ecdsa_inner(const char *name,
        const br_ec_impl *impl, const br_ec_curve_def *cd,
@@ -1204,6 +1243,38 @@ test_speed_ecdsa_p256_m31(void)
                &br_ecdsa_i31_vrfy_asn1);
 }
 
+static void
+test_speed_ecdsa_p256_m62(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_p256_m62_get();
+       if (ec != NULL) {
+               test_speed_ecdsa_inner("ECDSA m62 P-256",
+                       ec, &br_secp256r1,
+                       &br_ecdsa_i31_sign_asn1,
+                       &br_ecdsa_i31_vrfy_asn1);
+       } else {
+               printf("%-30s UNAVAILABLE\n", "ECDSA m62 P-256");
+       }
+}
+
+static void
+test_speed_ecdsa_p256_m64(void)
+{
+       const br_ec_impl *ec;
+
+       ec = br_ec_p256_m64_get();
+       if (ec != NULL) {
+               test_speed_ecdsa_inner("ECDSA m64 P-256",
+                       ec, &br_secp256r1,
+                       &br_ecdsa_i31_sign_asn1,
+                       &br_ecdsa_i31_vrfy_asn1);
+       } else {
+               printf("%-30s UNAVAILABLE\n", "ECDSA m64 P-256");
+       }
+}
+
 static void
 test_speed_ecdsa_i15(void)
 {
@@ -1615,13 +1686,18 @@ static const struct {
        STU(ec_prime_i31),
        STU(ec_p256_m15),
        STU(ec_p256_m31),
+       STU(ec_p256_m62),
+       STU(ec_p256_m64),
        STU(ec_c25519_i15),
        STU(ec_c25519_i31),
        STU(ec_c25519_m15),
        STU(ec_c25519_m31),
        STU(ec_c25519_m62),
+       STU(ec_c25519_m64),
        STU(ecdsa_p256_m15),
        STU(ecdsa_p256_m31),
+       STU(ecdsa_p256_m62),
+       STU(ecdsa_p256_m64),
        STU(ecdsa_i15),
        STU(ecdsa_i31),